Enzymatic cyclization of a potent bowman-birk protease inhibitor, sunflower trypsin inhibitor-1, and solution structure of an acyclic precursor peptide. (65/400)

The most potent known naturally occurring Bowman-Birk inhibitor, sunflower trypsin inhibitor-1 (SFTI-1), is a bicyclic 14-amino acid peptide from sunflower seeds comprising one disulfide bond and a cyclic backbone. At present, little is known about the cyclization mechanism of SFTI-1. We show here that an acyclic permutant of SFTI-1 open at its scissile bond, SFTI-1[6,5], also functions as an inhibitor of trypsin and that it can be enzymatically backbone-cyclized by incubation with bovine beta-trypsin. The resulting ratio of cyclic SFTI-1 to SFTI-1[6,5] is approximately 9:1 regardless of whether trypsin is incubated with SFTI-1[6,5] or SFTI-1. Enzymatic resynthesis of the scissile bond to form cyclic SFTI-1 is a novel mechanism of cyclization of SFTI-1[6,5]. Such a reaction could potentially occur on a trypsin affinity column as used in the original isolation procedure of SFTI-1. We therefore extracted SFTI-1 from sunflower seeds without a trypsin purification step and confirmed that the backbone of SFTI-1 is indeed naturally cyclic. Structural studies on SFTI-1[6,5] revealed high heterogeneity, and multiple species of SFTI-1[6,5] were identified. The main species closely resembles the structure of cyclic SFTI-1 with the broken binding loop able to rotate between a cis/trans geometry of the I7-P8 bond with the cis conformer being similar to the canonical binding loop conformation. The non-reactive loop adopts a beta-hairpin structure as in cyclic wild-type SFTI-1. Another species exhibits an iso-aspartate residue at position 14 and provides implications for possible in vivo cyclization mechanisms.  (+info)

Resistance to broomrape (Orobanche spp.) in sunflower (Helianthus annuus L.) is temperature dependent. (66/400)

The effects of various temperature regimes in the range 29-17/21-9 degrees C day/night on each stage of the parasitism process of Orobanche cumana and O. aegyptiaca on sunflower were studied under controlled conditions in polyethylene bags. The response of the resistant sunflower variety 'Ambar' was expressed as the degeneration of the parasite tissues after its establishment in the plant roots, and this stage was found to be temperature dependent. The degeneration rate of Orobanche tubercles in the resistant sunflower variety was also found to be temperature dependent and was about five times as great as that in the sensitive variety in the highest temperature regime tested of 29/21 degrees C day/night. The ability to reject the parasite by causing its degeneration and death is the main factor that determines the resistance. As the temperature rises, more tubercles degenerate and die, that is the sunflower plant expresses higher levels of resistance.  (+info)

ORFB is a subunit of F1F(O)-ATP synthase: insight into the basis of cytoplasmic male sterility in sunflower. (67/400)

ORFB is the product of a gene that is conserved in plant mitochondrial genomes, and which, on the basis of sequence motif and structural similarity, is predicted to be the homologue of yeast and mammalian ATP8, part of the F(O) component of the F1F(O)-ATP synthase. We have shown that, in sunflower, orfB transcripts are edited, increasing the similarity of the predicted protein to ATP8 proteins from non-plant species. Blue-native polyacrylamide gel electrophoresis and peptide sequencing confirm that ORFB localizes to the ATP synthase complex. The predicted amino-terminal 19 amino acids of ORFB are identical to those in the chimeric mitochondrial ORF522 protein, which is associated with cytoplasmic male sterility (CMS) in sunflower. Assays comparing respiratory complexes from a male-sterile line expressing ORF522 with those from a male-fertile line show a specific decrease in ATP hydrolysis by the ATP synthase. These observations allow us to propose a mechanism underlying CMS that is associated with the expression of chimeric open reading frames containing part of the orfB gene.  (+info)

Size-dependent growth and the development of inequality in maize, sunflower and soybean. (68/400)

Links were investigated between allometry of plant growth and dynamics of size structure of well-fertilized, irrigated crops of soybean (Glycine max L.), sunflower (Helianthus annuus L.) and maize (Zea mays L.) grown at standard plant-population densities (D), as in commercial crops (D = 30, 6 and 8.5 plants m-2, respectively), and at high densities (2D). Patterns of size-dependent growth of shoot and seed mass accumulation were distinctly different among species. In soybean and sunflower, non-linear relationships between size and subsequent growth led to strong hierarchical populations in terms of both shoot and seed biomass. Curvilinear (soybean) and sigmoid (sunflower) size-dependent growth determined strongly asymmetrical (soybean) and bimodal (sunflower) frequency distributions of shoot biomass indicating predominantly size asymmetrical competition among individuals. In comparison, a lower plant-to-plant variation coupled with a typical linear allometry of growth to plant size indicated symmetrical two-sided plant interference in maize. Despite the weak development of hierarchies in shoot biomass, a strong inequality in reproductive output developed in crowded populations of maize indicating an apparent breakage of reproductive allometry.  (+info)

Identification of three MADS-box genes expressed in sunflower capitulum. (69/400)

Three cDNA clones, HaPI, HaAG and HaAP3, were isolated from sunflower inflorescences at the R2 stage of development. The cDNAs share high sequence similarity with the PISTILLATA, AGAMOUS, and APETALA3 genes from Arabidopsis, respectively, which contain a MADS-box and are involved in floral organ development. Expression of the corresponding genes was analysed by northern blots and in situ hybridization. They are expressed preferentially in the R3 and R4 stages of capitulum development. HaAG accumulates in fertile flowers, mainly in stamens, while HaPI and HaAP3 are preferentially expressed in ray (sterile) flowers and more weakly in petals and stamens of fertile flowers.  (+info)

Recombinant Saccharomyces cerevisiae expressing P450 in artificial digestive systems: a model for biodetoxication in the human digestive environment. (70/400)

The use of genetically engineered microorganisms such as bacteria or yeasts as live vehicles to carry out bioconversion directly in the digestive environment is an important challenge for the development of innovative biodrugs. A system that mimics the human gastrointestinal tract was combined with a computer simulation to evaluate the survival rate and cinnamate 4-hydroxylase activity of a recombinant model of Saccharomyces cerevisiae expressing the plant P450 73A1. The yeasts showed a high level of resistance to gastric and small intestinal secretions (survival rate after 4 h of digestion, 95.6% +/- 10.1% [n = 4]) but were more sensitive to the colonic conditions (survival rate after 4 h of incubation, 35.9% +/- 2.7% [n = 3]). For the first time, the ability of recombinant S. cerevisiae to carry out a bioconversion reaction has been demonstrated throughout the gastrointestinal tract. In the gastric-small intestinal system, 41.0% +/- 5.8% (n = 3) of the ingested trans-cinnamic acid was converted into p-coumaric acid after 4 h of digestion, as well as 8.9% +/- 1.6% (n = 3) in the stomach, 13.8% +/- 3.3% (n = 3) in the duodenum, 11.8% +/- 3.4% (n = 3) in the jejunum, and 6.5% +/- 1.0% (n = 3) in the ileum. In the large intestinal system, cinnamate 4-hydroxylase activity was detected but was too weak to be quantified. These results suggest that S. cerevisiae may afford a useful host for the development of biodrugs and may provide an innovative system for the prevention or treatment of diseases that escape classical drug action. In particular, yeasts may provide a suitable vector for biodetoxication in the digestive environment.  (+info)

Origin and development in vitro of shoot buds and somatic embryos from intact roots of Helianthus annuus x H. tuberosus. (71/400)

A variant clone of the tetraploid (2n = 4x = 68) interspecific hybrid Helianthus annuus x H. tuberosus derived by in vitro tissue culture showed a deviation from the usual pattern of organization of the plant body. This variant developed shoot-like structures and somatic embryos from intact adventitious roots of in vitro-grown plantlets. The morphogenetic structures were not normally able to differentiate complete plants. They did show cellular proliferation with the inception of additional secondary embryos, leaf-like structures and unorganized masses of callus. Nevertheless, some ectopic structures isolated from roots and transferred onto fresh basal medium without growth regulators were able to produce plantlets that exhibited the same phenotype as the original clone. Histological analyses demonstrate that they originate from cortical cells in association with the development of lateral root primordia.  (+info)

Nitrate does not result in iron inactivation in the apoplast of sunflower leaves. (72/400)

It has been hypothesized that nitrate (NO(3)(-)) nutrition might induce iron (Fe) deficiency chlorosis by inactivation of Fe in the leaf apoplast (H.U. Kosegarten, B. Hoffmann, K. Mengel [1999] Plant Physiol 121: 1069-1079). To test this hypothesis, sunflower (Helianthus annuus L. cv Farnkasol) plants were grown in nutrient solutions supplied with various nitrogen (N) forms (NO(3)(-), NH(4)(+) and NH(4)NO(3)), with or without pH control by using pH buffers [2-(N-morpholino)ethanesulfonic acid or 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid]. It was shown that high pH in the nutrient solution restricted uptake and shoot translocation of Fe independently of N form and, therefore, induced Fe deficiency chlorosis at low Fe supply [1 micro M ferric ethylenediaminedi(O-hydroxyphenylacetic acid)]. Root NO(3)(-) supply (up to 40 mM) did not affect the relative distribution of Fe between leaf apoplast and symplast at constant low external pH of the root medium. Although perfusion of high pH-buffered solution (7.0) into the leaf apoplast restricted (59)Fe uptake rate as compared with low apoplastic solution pH (5.0 and 6.0, respectively), loading of NO(3)(-) (6 mM) showed no effect on (59)Fe uptake by the symplast of leaf cells. However, high light intensity strongly increased (59)Fe uptake, independently of apoplastic pH or of the presence of NO(3)(-) in the apoplastic solution. Finally, there are no indications in the present study that NO(3)(-) supply to roots results in the postulated inactivation of Fe in the leaf apoplast. It is concluded that NO(3)(-) nutrition results in Fe deficiency chlorosis exclusively by inhibited Fe acquisition by roots due to high pH at the root surface.  (+info)