PrKX is a novel catalytic subunit of the cAMP-dependent protein kinase regulated by the regulatory subunit type I. (33/37241)

The human X chromosome-encoded protein kinase X (PrKX) belongs to the family of cAMP-dependent protein kinases. The catalytically active recombinant enzyme expressed in COS cells phosphorylates the heptapeptide Kemptide (LRRASLG) with a specific activity of 1.5 micromol/(min.mg). Using surface plasmon resonance, high affinity interactions were demonstrated with the regulatory subunit type I (RIalpha) of cAMP-dependent protein kinase (KD = 10 nM) and the heat-stable protein kinase inhibitor (KD = 15 nM), but not with the type II regulatory subunit (RIIalpha, KD = 2.3 microM) under physiological conditions. Kemptide and autophosphorylation activities of PrKX are strongly inhibited by the RIalpha subunit and by protein kinase inhibitor in vitro, but only weakly by the RIIalpha subunit. The inhibition by the RIalpha subunit is reversed by addition of nanomolar concentrations of cAMP (Ka = 40 nM), thus demonstrating that PrKX is a novel, type I cAMP-dependent protein kinase that is activated at lower cAMP concentrations than the holoenzyme with the Calpha subunit of cAMP-dependent protein kinase. Microinjection data clearly indicate that the type I R subunit but not type II binds to PrKX in vivo, preventing the translocation of PrKX to the nucleus in the absence of cAMP. The RIIalpha subunit is an excellent substrate for PrKX and is phosphorylated in vitro in a cAMP-independent manner. We discuss how PrKX can modulate the cAMP-mediated signal transduction pathway by preferential binding to the RIalpha subunit and by phosphorylating the RIIalpha subunit in the absence of cAMP.  (+info)

Conserved residues of human XPG protein important for nuclease activity and function in nucleotide excision repair. (34/37241)

The human XPG endonuclease cuts on the 3' side of a DNA lesion during nucleotide excision repair. Mutations in XPG can lead to the disorders xeroderma pigmentosum (XP) and Cockayne syndrome. XPG shares sequence similarities in two regions with a family of structure-specific nucleases and exonucleases. To begin defining its catalytic mechanism, we changed highly conserved residues and determined the effects on the endonuclease activity of isolated XPG, its function in open complex formation and dual incision reconstituted with purified proteins, and its ability to restore cellular resistance to UV light. The substitution A792V present in two XP complementation group G (XP-G) individuals reduced but did not abolish endonuclease activity, explaining their mild clinical phenotype. Isolated XPG proteins with Asp-77 or Glu-791 substitutions did not cleave DNA. In the reconstituted repair system, alanine substitutions at these positions permitted open complex formation but were inactive for 3' cleavage, whereas D77E and E791D proteins retained considerable activity. The function of each mutant protein in the reconstituted system was mirrored by its ability to restore UV resistance to XP-G cell lines. Hydrodynamic measurements indicated that XPG exists as a monomer in high salt conditions, but immunoprecipitation of intact and truncated XPG proteins showed that XPG polypeptides can interact with each other, suggesting dimerization as an element of XPG function. The mutation results define critical residues in the catalytic center of XPG and strongly suggest that key features of the strand cleavage mechanism and active site structure are shared by members of the nuclease family.  (+info)

Perturbation of mammalian cell division. III. The topography and kinetics of extrusion subdivision. (35/37241)

If mitotic-arrested, cold-stored HeLa cells are incubated at 37 degrees C a proportion of the population divides by an aberrant process which we have called subdivision by extrusion. This process has been studied by time-lapse photography and shown to differ from normal cleavage in several respects. The cell surface becomes more generally mobile and, instead of producing the precisely localized furrowing activity of cytokinesis, gives rise to multiple surface protrusions. These protrusions enlarge at the expense of the parent cell and develop into a cluster of small daughter cells (mini segregants). The surface structure of the cell, as seen by scanning electron microscopy, also changes; the microvilli characteristic of interphase, metaphase and cleaving HeLa cells are lost during extrusion and the cell surface becomes smooth. Extrusion activity is much more variable than division by cleavage in terms of both topography and kinetics, and in general takes longer to complete. Some cells in the cold-treated populations divide by mixtures of cleavage and extrusion or by cleavage alone. The relative numbers of cells dividing in different ways vary with the conditions of pretreatment and incubation of the mitotic cells. The greater the perturbation (e.g. longer cold storage), the greater the proportion of extruding rather than cleaving cells. Human diploid cells can also be induced to subdivide by extrusion. Possible mechanisms underlying the different types of division activity are discussed.  (+info)

Characterization of nuclear structures containing superhelical DNA. (36/37241)

Structures resembling nuclei but depleted of protein may be released by gently lysing cells in solutions containing non-ionic detergents and high concentrations of salt. These nucleoids sediment in gradients containing intercalating agents in a manner characteristic of DNA that is intact, supercoiled and circular. The concentration of salt present during isolation of human nucleoids affects their protein content. When made in I-95 M NaCl they lack histones and most of the proteins characteristic of chromatin; in 1-0 M NaCl they contain variable amounts of histones. The effects of various treatments on nucleoid integrity were investigated.  (+info)

The interaction of n-tetraalkylammonium compounds with a human organic cation transporter, hOCT1. (37/37241)

Polyspecific organic cation transporters in epithelia play an important role in the elimination of many endogenous bioactive amines and therapeutically important drugs. Recently, the first human organic cation transporter (hOCT1) was cloned from liver. The purpose of the current study was to determine the effect of molecular size and hydrophobicity on the transport of organic cations by hOCT1. We studied the interaction of a series of n-tetraalkylammonium (n-TAA) compounds (alkyl chain length, N, ranging from 1 to 6 carbons) with hOCT1 in a transiently transfected human cell line, HeLa. [14C]tetraethylammonium (TEA) uptake was measured under different experimental conditions. Both cis-inhibition and trans-stimulation studies were carried out. With the exception of tetramethylammonium, all of the n-TAAs significantly inhibited [14C]TEA uptake. A reversed correlation of IC50 values (range, 3.0-260 microM) with alkyl chain lengths or partition coefficients (LogP) was observed. trans-Stimulation studies revealed that TEA, tetrapropylammonium, tetrabutylammonium, as well as tributylmethylammonium trans-stimulated TEA uptake mediated by hOCT1. In contrast, tetramethylammonium and tetrapentylammonium did not trans-stimulate [14C]TEA uptake, and tetrahexylammonium demonstrated an apparent "trans-inhibition" effect. These data indicate that with increasing alkyl chain lengths (N >/= 2), n-TAA compounds are more poorly translocated by hOCT1 although their potency of inhibition increases. Similar findings were obtained with nonaliphatic hydrocarbons. These data suggest that a balance between hydrophobic and hydrophilic properties is necessary for binding and subsequent translocation by hOCT1.  (+info)

Telomeric repeats on small polydisperse circular DNA (spcDNA) and genomic instability. (38/37241)

Small polydisperse circular DNA (spcDNA) is a heterogeneous population of extrachromosomal circular molecules present in a large variety of eukaryotic cells. Elevated amounts of total spcDNA are related to endogenous and induced genomic instability in rodent and human cells. We suggested spcDNA as a novel marker for genomic instability, and speculated that spcDNA might serve as a mutator. In this study, we examine the presence of telomeric sequences on spcDNA. We report for the first time the appearance of telomeric repeats in spcDNA molecules (tel-spcDNA) in rodent and human cells. Restriction enzyme analysis indicates that tel-spcDNA molecules harbor mostly, if not exclusively, telomeric repeats. In rodent cells, tel-spcDNA levels are higher in transformed than in normal cells and are enhanced by treatment with carcinogen. Tel-spcDNA is also detected in some human tumors and cell lines, but not in others. We suggest, that its levels in human cells may be primarily related to the amount of the chromosomal telomeric sequences. Tel-spcDNA may serve as a unique mutator, through specific mechanisms related to the telomeric repeats, which distinguish it from the total heterogeneous spcDNA population. It may affect telomere dynamics and genomic instability by clastogenic events, alterations of telomere size and sequestration of telomeric proteins.  (+info)

Syntaxin 11 is associated with SNAP-23 on late endosomes and the trans-Golgi network. (39/37241)

SNARE proteins are known to play a role in regulating intracellular protein transport between donor and target membranes. This docking and fusion process involves the interaction of specific vesicle-SNAREs (e.g. VAMP) with specific cognate target-SNAREs (e.g. syntaxin and SNAP-23). Using human SNAP-23 as the bait in a yeast two-hybrid screen of a human B-lymphocyte cDNA library, we have identified the 287-amino-acid SNARE protein syntaxin 11. Like other syntaxin family members, syntaxin 11 binds to the SNARE proteins VAMP and SNAP-23 in vitro and also exists in a complex with SNAP-23 in transfected HeLa cells and in native human B lymphocytes. Unlike other syntaxin family members, no obvious transmembrane domain is present in syntaxin 11. Nevertheless, syntaxin 11 is predominantly membrane-associated and colocalizes with the mannose 6-phosphate receptor on late endosomes and the trans-Golgi network. These data suggest that syntaxin 11 is a SNARE that acts to regulate protein transport between late endosomes and the trans-Golgi network in mammalian cells.  (+info)

ARF6 requirement for Rac ruffling suggests a role for membrane trafficking in cortical actin rearrangements. (40/37241)

The ARF6 GTPase regulates a novel endosomal-plasma membrane recycling pathway and influences cortical actin remodeling. Here we examined the relationship between ARF6 and Rac1, a Rho family GTPase, implicated in cortical actin rearrangements. Endogenous Rac1 colocalized with ARF6 at the plasma membrane and on the ARF6 recycling endosome in untransfected HeLa and primary human fibroblast cells. In transfected HeLa cells Rac1 and ARF6 also colocalized. Cells expressing wild-type ARF6 or Rac1 formed actin-containing surface protrusions and membrane ruffles, respectively, upon treatment with the G protein activator aluminum fluoride. Aluminum fluoride-treatment of cells transfected with equivalent amounts of plasmid resulted in enhanced membrane ruffling, with protrusions appearing as Rac expression was lowered. Co-expression of the dominant negative, GTP binding-defective ARF6 T27N mutant inhibited the aluminum fluoride-induced ruffling observed in cells expressing Rac1, and the constitutive ruffling observed in cells expressing the activated Rac1 Q61L mutant. In contrast, co-expression of the GTP-binding-defective, T17N mutant of either Rac1 or Cdc42 with ARF6 did not inhibit the aluminum fluoride-induced surface protrusions, nor did inactivation of Rho with C3-transferase. These observations suggest that ARF6, a non-Rho family GTPase, can, by itself, alter cortical actin and can influence the ability of Rac1 to form lamellipodia, in part, by regulating its trafficking to the plasma membrane.  (+info)