Regulation of protein phosphatase 2A activity by heat shock transcription factor 2. (73/8916)

Heat shock transcription factor (HSF) mediates the stress-induced expression of heat shock protein genes (hsp). However, HSF is required for normal cell function even in the absence of stress and is important for cell cycle progression, but the mechanism that mediates these effects of HSF is unknown. Here, it is shown that a member of the HSF family, HSF2, interacts with the PR65 (A) subunit of protein phosphatase 2A (PP2A). HSF2 binding to PR65 blocks its interaction with the catalytic subunit, due to competition between HSF2 and catalytic subunit for the same binding site in PR65. In addition, overexpression of HSF2 stimulates PP2A activity in cells, indicating the relevance of HSF2 as a regulator of PP2A in vivo. These results identify HSF2 as a dual function protein, capable of regulating both hsp expression and PP2A activity. This could function as a mechanism by which hsp expression is integrated with the control of cell division or other PP2A-regulated pathways.  (+info)

Helicobacter pylori heat shock protein A: serologic responses and genetic diversity. (74/8916)

Helicobacter pylori synthesizes an unusual GroES homolog, heat shock protein A (HspA). The present study was aimed at an assessment of the serological response to HspA in a group of Chinese patients with defined gastroduodenal pathologies and determination of whether diversity is present in the nucleotide sequences encoding HspA in isolates from these patients. Serum samples collected from 154 patients who had an upper gastrointestinal pathology and the presence of H. pylori defined by biopsy were tested for an immunoglobulin G (IgG) serologic response to H. pylori HspA by an enzyme linked immunosorbant assay. HspA-encoding nucleotide sequences in H. pylori isolates from 14 patients (7 seropositive and 7 seronegative for HspA) were analyzed by PCR and direct sequencing of the PCR products. The sequencing results were compared to those of 48 isolates from other parts of the world. Of the 154 known H. pylori-positive patients, 54 (35.1%) were seropositive for HspA. The A domain (GroES homology) of HspA was highly conserved in the 14 isolates tested. Although the B domain (metal-binding site unique to H. pylori) resembled that in the known major variant, particular amino acid substitutions allowed definition of an HspA variant associated with isolates from East Asia. There were no associations between patient characteristics and HspA seropositivity or amino acid sequences. We confirmed in this study that the clinical outcomes of H. pylori infection are not related to HspA antigenicity or to sequence variation. However, B-domain sequence variation may be a marker for the study of the genetic diversity of H. pylori strains of different geographic origins.  (+info)

Molecular chaperones: How J domains turn on Hsp70s. (75/8916)

Molecular chaperones of the heat shock protein 70 (Hsp70) variety facilitate protein folding and assembly. They are assisted in this role by their Hsp40 partners, and recent studies have shed new light on how the 'J domains' of these 'cochaperones' activate substrate binding by Hsp70 molecules.  (+info)

Joint action of two RNA degradation pathways controls the timing of maternal transcript elimination at the midblastula transition in Drosophila melanogaster. (76/8916)

Maternally synthesized RNAs program early embryonic development in many animals. These RNAs are degraded rapidly by the midblastula transition (MBT), allowing genetic control of development to pass to zygotically synthesized transcripts. Here we show that in the early embryo of Drosophila melanogaster, there are two independent RNA degradation pathways, either of which is sufficient for transcript elimination. However, only the concerted action of both pathways leads to elimination of transcripts with the correct timing, at the MBT. The first pathway is maternally encoded, is targeted to specific classes of mRNAs through cis-acting elements in the 3'-untranslated region and is conserved in Xenopus laevis. The second pathway is activated 2 h after fertilization and functions together with the maternal pathway to ensure that transcripts are degraded by the MBT.  (+info)

Heat shock proteins in human endometrium throughout the menstrual cycle. (77/8916)

Human endometrium, in response to steroid hormones, undergoes characteristic cycles of proliferation, secretory changes, and tissue shedding. Human endometrium expresses a molecular repertoire which includes the heat shock proteins (Hsps) Hsp27, Hsp60, Hsp70, Hsp90, and alpha crystallin B chain. The expression of Hsp27, Hsp60, and the constitutive form of Hsp70 (Hsc70) shows a sharp increase in human endometrium after ovulation. The maximal expression of the molecular chaperone, alpha crystallin B chain, occurs during the secretory phase. In view of known functions of the Hsps, it is likely that these proteins are involved in protection of the endometrial proteins against factors with the potential to lead to protein denaturation. Tumor necrosis factor-alpha (TNF-alpha) is a cytotoxic cytokine that is produced in progressive amounts during the secretory phase. The function of the Hsps may be to protect cells against the cytotoxic damage of TNF-alpha, particularly during the critical period of "implantation window."  (+info)

Heat shock protein expression during gametogenesis and embryogenesis. (78/8916)

When cells are subjected to various stress factors, they increase the production of a group of proteins called heat shock proteins (hsp). Heat shock proteins are highly conserved proteins present in organisms ranging from bacteria to man. Heat shock proteins enable cells to survive adverse environmental conditions by preventing protein denaturation. Thus the physiological and pathological potential of hsps is enormous and has been studied widely over the past two decades. The presence or absence of hsps influences almost every aspect of reproduction. They are among the first proteins produced during mammalian embryo development. In this report, the production of hsps in gametogenesis and early embryo development is described. It has been suggested that prolonged and asymptomatic infections trigger immunity to microbial hsp epitopes that are also expressed in man. This may be relevant for human reproduction, since many couples with fertility problems have had a previous genital tract infection. Antibodies to bacterial and human hsps are present at high titers in sera of many patients undergoing in vitro fertilization. In a mouse embryo culture model, these antibodies impaired the mouse embryo development at unique developmental stages. The gross morphology of these embryos resembled cells undergoing apoptosis. The TUNEL (terminal deoxynucleotidyl transferase-mediated X-dUTP nick end labeling) staining pattern, which is a common marker of apoptosis, revealed that embryos cultured in the presence of hsp antibodies stained TUNEL-positive more often than unexposed embryos. These data extend preexisting findings showing the detrimental effect of immune sensitization to hsps on embryo development.  (+info)

Immunity to heat shock proteins and neurological disorders of women. (79/8916)

Stress or heat shock proteins are constitutively expressed in normal CNS tissues in a variety of cell types (oligodendrocytes, astrocytes, and neurons). Their presence may protect cells from various stresses, such as hypoxia, anoxia, and excessive excitatory stimulation. Increased amounts of hsp are expressed in various cells of the CNS during acute toxic-metabolic states and in chronic degenerative and inflammatory diseases. Increased expression of hsp may lead to immune responses to these proteins. Antibodies to mycobacterial hsp bind to normal human myelin and to oligodendrocytes in regions of MS demyelination. Cellular immune responses to hsp occur with increased frequency and magnitude in persons with MS, especially those with recent onset of disease. In addition, there are populations of T cells expressing gamma/delta T cells in the brains and spinal fluids of persons with MS, suggesting an in situ immune response to hsps. Humoral immune responses to hsp are found in CSF, but no disease specificity has been documented. Some myelin proteins have sequence homology with particular hsps. One instance is the homology between a peptide of mycobacterial Hsp65 and the myelin protein CNP. Our data on EAE suggest that immune responses to either cross-reactive hsp epitopes or whole hsp can modify the course of both acute and chronic relapsing EAE. In addition, the severity and frequency of environmental exposure to infectious agents can modify the course of EAE, possibly by altering the patterns of immune response to hsp. Finally, tolerance to the small hsp, alpha B-crystallin, a putative autoantigen in persons with MS, alters the course of relapsing EAE, supporting its role in chronic, autoimmune CNS disease. Modifying immune responses to hsp may be a potential new treatment option for persons with MS.  (+info)

Immunity to heat shock proteins and arthritic disorders. (80/8916)

Adjuvant arthritis (AA) is a frequently used model of experimental arthritis. Because of its histopathology, which is reminiscent of rheumatoid arthritis in humans, AA is used as a model for the development of novel anti-inflammatory drugs. Recently, it has become evident that AA is a typical T-cell-mediated autoimmune condition. Therefore, novel immunotherapies targeted to T cells can be developed in this model. Analysis of responding T cells in AA have now led to the definition of various antigens with potential relevance to arthritis, including human arthritic conditions. One such antigen defined in AA is the 60kD heat shock protein. Both T-cell vaccination approaches and active antigen immunizations and antigen toleration approaches have turned out to be effective in suppressing AA.  (+info)