Phasic right coronary artery blood flow in conscious dogs with normal and elevated right ventricular pressures. (1/10358)

We studied phasic right coronary blood flow in well trained normal dogs and dogs with pulmonic stenosis. We installed electromagnetic flow transducers and pressure tubes under anesthesia to monitor right coronary blood flow, cardiac output, central aortic blood pressure, and right ventribular pressure. In normotensive dogs, systolic flow amplitude equaled early diastolic flow levels. The ratio of systolic to diastolic flow at rest was substantially greater in the right coronary bed (36+/-1.3%) than in the left circumflex bed (13+/-3.6%). Right diastolid flow runoff, including the cove late in diastole, resembled left circumflex runoff. Blood flow to the normotensive right (37+/-1.1 ml/min 100(-1) g) and the left (35+/-1.0 ml/min(-1) g) ventricular myocardium indicated equal perfusion of both cardiac walls. Throttling of systolic flow was related directly to the right ventricular systolic pressure level in the dogs with pulmonic stenosis. Retrograde systolic flow occurred in severe right ventricular hypertension. The late diastolic runoff pattern in dogs with pulmonic stenosis appeared the same as for the normotensive dogs. We obtained systolic to diastolic flow ratios of 1/3 the value of normotensive hearts in high and severe pulmonic hypertension. Electrocardiograms and studies of pathology suggested restricted blood flow to the inner layers of the right myocardium in the dogs with severe and high right ventricular hypertension. Normotensive and hypertensive peak hyperemic flow responses were similar, except for an increased magnitude of diastolic flow, with proportionately less systolic flow in hypertensive states.  (+info)

Regulation of chamber-specific gene expression in the developing heart by Irx4. (2/10358)

The vertebrate heart consists of two types of chambers, the atria and the ventricles, which differ in their contractile and electrophysiological properties. Little is known of the molecular mechanisms by which these chambers are specified during embryogenesis. Here a chicken iroquois-related homeobox gene, Irx4, was identified that has a ventricle-restricted expression pattern at all stages of heart development. Irx4 protein was shown to regulate the chamber-specific expression of myosin isoforms by activating the expression of the ventricle myosin heavy chain-1 (VMHC1) and suppressing the expression of the atrial myosin heavy chain-1 (AMHC1) in the ventricles. Thus, Irx4 may play a critical role in establishing chamber-specific gene expression in the developing heart.  (+info)

Insulin-like growth factor-1 induces Mdm2 and down-regulates p53, attenuating the myocyte renin-angiotensin system and stretch-mediated apoptosis. (3/10358)

Insulin-like growth factor (IGF)-1 inhibits apoptosis, but its mechanism is unknown. Myocyte stretching activates p53 and p53-dependent genes, leading to the formation of angiotensin II (Ang II) and apoptosis. Therefore, this in vitro system was used to determine whether IGF-1 interfered with p53 function and the local renin-angiotensin system (RAS), decreasing stretch-induced cell death. A single dose of 200 ng/ml IGF-1 at the time of stretching decreased myocyte apoptosis 43% and 61% at 6 and 20 hours. Ang II concentration was reduced 52% at 20 hours. Additionally, p53 DNA binding to angiotensinogen (Aogen), AT1 receptor, and Bax was markedly down-regulated by IGF-1 via the induction of Mdm2 and the formation of Mdm2-p53 complexes. Concurrently, the quantity of p53, Aogen, renin, AT1 receptor, and Bax was reduced in stretched myocytes exposed to IGF-1. Conversely, Bcl-2 and the Bcl-2-to-Bax protein ratio increased. The effects of IGF-1 on cell death, Ang II synthesis, and Bax protein were the consequence of Mdm2-induced down-regulation of p53 function. In conclusion, the anti-apoptotic impact of IGF-1 on stretched myocytes was mediated by its capacity to depress p53 transcriptional activity, which limited Ang II formation and attenuated the susceptibility of myocytes to trigger their endogenous cell death pathway.  (+info)

Adenoviral gene transfer of the human V2 vasopressin receptor improves contractile force of rat cardiomyocytes. (4/10358)

BACKGROUND: In congestive heart failure, high systemic levels of the hormone arginine vasopressin (AVP) result in vasoconstriction and reduced cardiac contractility. These effects are mediated by the V1 vasopressin receptor (V1R) coupled to phospholipase C beta-isoforms. The V2 vasopressin receptor (V2R), which promotes activation of the Gs/adenylyl cyclase system, is physiologically expressed in the kidney but not in the myocardium. Expression of a recombinant V2R (rV2R) in the myocardium could result in a positive inotropic effect via the endogenous high concentrations of AVP in heart failure. METHODS AND RESULTS: A recombinant adenovirus encoding the human V2R (Ad-V2R) was tested for its ability to modulate the cardiac Gs/adenylyl cyclase system and to potentiate contractile force in rat ventricular cardiomyocytes and in H9c2 cardiomyoblasts. Ad-V2R infection resulted in a virus concentration-dependent expression of the transgene and led to a marked increase in cAMP formation in rV2R-expressing cardiomyocytes after exposure to AVP. Single-cell shortening measurements showed a significant agonist-induced contraction amplitude enhancement, which was blocked by the V2R antagonist, SR 121463A. Pretreatment of Ad-V2R-infected cardiomyocytes with AVP led to desensitization of the rV2R after short-term agonist exposure but did not lead to further loss of receptor function or density after long-term agonist incubation, thus demonstrating resistance of the rV2R to downregulation. CONCLUSIONS: Adenoviral gene transfer of the V2R in cardiomyocytes can modulate the endogenous adenylyl cyclase-signal transduction cascade and can potentiate contraction amplitude in cardiomyocytes. Heterologous expression of cAMP-forming receptors in the myocardium could lead to novel strategies in congestive heart failure by bypassing the desensitized beta-adrenergic receptor signaling.  (+info)

An inhibitor of p38 mitogen-activated protein kinase protects neonatal cardiac myocytes from ischemia. (5/10358)

Cellular ischemia results in activation of a number of kinases, including p38 mitogen-activated protein kinase (MAPK); however, it is not yet clear whether p38 MAPK activation plays a role in cellular damage or is part of a protective response against ischemia. We have developed a model to study ischemia in cultured neonatal rat cardiac myocytes. In this model, two distinct phases of p38 MAPK activation were observed during ischemia. The first phase began within 10 min and lasted less than 1 h, and the second began after 2 h and lasted throughout the ischemic period. Similar to previous studies using in vivo models, the nonspecific activator of p38 MAPK and c-Jun NH2-terminal kinase, anisomycin, protected cardiac myocytes from ischemic injury, decreasing the release of cytosolic lactate dehydrogenase by approximately 25%. We demonstrated, however, that a selective inhibitor of p38 MAPK, SB 203580, also protected cardiac myocytes against extended ischemia in a dose-dependent manner. The protective effect was seen even when the inhibitor was present during only the second, sustained phase of p38 MAPK activation. We found that ischemia induced apoptosis in neonatal rat cardiac myocytes and that SB 203580 reduced activation of caspase-3, a key event in apoptosis. These results suggest that p38 MAPK induces apoptosis during ischemia in cardiac myocytes and that selective inhibition of p38 MAPK could be developed as a potential therapy for ischemic heart disease.  (+info)

Taurine modulates I(Kr) but I(Ks) in guinea-pig ventricular cardiomyocytes. (6/10358)

1. Effects of taurine on the delayed rectifier K+ current (I(K)) in isolated guinea-pig ventricular cardiomyocytes were examined at different intracellular Ca2+ concentration ([Ca2+]i), using whole-cell voltage and current clamp techniques. Experiments were performed at 36 degrees C. 2. Addition of taurine (10-20 mM) decreased the action potential duration (APD) at pCa 8, but increased the APD at pCa 6. Taurine (20 mM) enhanced I(K) at 70 mV by 22.4 +/- 3.1% (n = 6, P < 0.01) at pCa 8, whereas taurine inhibited the I(K) by 27.1 +/- 2.7% (n = 6, P < 0.01) at pCa 6. These responses behaved in a concentration-dependent manner. 3. The I(K) is composed of the rapid and slow components (I(Kr) and I(Ks)). When [Ca2+]i was pCa 6, taurine at 20 mM reduced the tail current of I(Kr) at 70 mV by 16.5 +/- 2.7% (n = 5, P < 0.05) and that of I(Ks) at 70 mV by 27.1 +/- 2.8% (n = 6, P < 0.01). In contrast, at pCa 8, the tail currents of I(Kr) and I(Ks) at 70 mV were enhanced by 13.4 +/- 3.2% (n = 7, P < 0.05) and by 22.4 +/- 3.1% (n = 7, P < 0.01), respectively. The voltages of half-maximum activation (V1/2) for I(Kr) and I(Ks) were not modified by taurine. 4. Addition of E-4031 (5 microM) to taurine had a complete blockade of the tail current of I(Kr), but not I(Ks). The remained tail current (I(Ks)) in the presence of E-4031 (5 microM) was not affected by taurine (20 mM), but was blocked by 293B (30 microM). 5. These results indicate that taurine modulates I(Kr) but not I(Ks), depending on [Ca2+]i, resulting in regulation of the APD.  (+info)

A comparison of an A1 adenosine receptor agonist (CVT-510) with diltiazem for slowing of AV nodal conduction in guinea-pig. (7/10358)

1. The purpose of this study was to compare the pharmacological properties (i.e. the AV nodal depressant, vasodilator, and inotropic effects) of two AV nodal blocking agents belonging to different drug classes; a novel A1 adenosine receptor (A1 receptor) agonist, N-(3(R)-tetrahydrofuranyl)-6-aminopurine riboside (CVT-510), and the prototypical calcium channel blocker diltiazem. 2. In the atrial-paced isolated heart, CVT-510 was approximately 5 fold more potent to prolong the stimulus-to-His bundle (S-H interval), a measure of slowing AV nodal conduction (EC50 = 41 nM) than to increase coronary conductance (EC50 = 200 nM). At concentrations of CVT-510 (40 nM) and diltiazem (1 microM) that caused equal prolongation of S-H interval (approximately 10 ms), diltiazem, but not CVT-510, significantly reduced left ventricular developed pressure (LVP) and markedly increased coronary conductance. CVT-510 shortened atrial (EC50 = 73 nM) but not the ventricular monophasic action potentials (MAP). 3. In atrial-paced anaesthetized guinea-pigs, intravenous infusions of CVT-510 and diltiazem caused nearly equal prolongations of P-R interval. However, diltiazem, but not CVT-510, significantly reduced mean arterial blood pressure. 4. Both CVT-510 and diltiazem prolonged S-H interval, i.e., slowed AV nodal conduction. However, the A1 receptor-selective agonist CVT-510 did so without causing the negative inotropic, vasodilator, and hypotensive effects associated with diltiazem. Because CVT-510 did not affect the ventricular action potential, it is unlikely that this agonist will have a proarrythmic action in ventricular myocardium.  (+info)

Effects of tumour necrosis factor-alpha on left ventricular function in the rat isolated perfused heart: possible mechanisms for a decline in cardiac function. (8/10358)

1. The cardiac depressant actions of TNF were investigated in the isolated perfused rat heart under constant flow (10 ml min(-1)) and constant pressure (70 mmHg) conditions, using a recirculating (50 ml) mode of perfusion. 2. Under constant flow conditions TNF (20 ng ml(-1)) caused an early (< 25 min) decrease in left ventricular developed pressure (LVDP), which was maintained for 90 min (LVDP after 90 min: control vs TNF; 110 +/- 4 vs 82 +/- 10 mmHg, P < 0.01). 3. The depression in cardiac function seen with TNF under constant flow conditions, was blocked by the ceramidase inhibitor N-oleoylethanolamine (NOE), 1 microM, (LVDP after 90 min: TNF vs TNF with NOE; 82 +/- 10 vs 11 +/- 5 mmHg, P < 0.05). 4. In hearts perfused at constant pressure, TNF caused a decrease in coronary flow rate (change in flow 20 min after TNF: control vs TNF; -3.0 +/- 0.9 vs -8.7 +/- 1.2 ml min(-1), P < 0.01). This was paralleled by a negative inotropic effect (change in LVDP 20 min after TNF: control vs TNF; -17 +/- 7 vs -46 +/- 6 mmHg, P < 0.01). The decline in function was more rapid and more severe than that seen under conditions of constant flow. 5. These data indicate that cardiac function can be disrupted by TNF on two levels, firstly via a direct, ceramidase dependant negative inotropic effect, and secondly via an indirect coronary vasoconstriction.  (+info)