Angiotensin-(1-7) is a modulator of the human renin-angiotensin system. (65/4530)

The renin-angiotensin system is important for cardiovascular homeostasis. Currently, therapies for different cardiovascular diseases are based on inhibition of angiotensin-converting enzyme (ACE) or angiotensin II receptor blockade. Inhibition of ACE blocks metabolism of angiotensin-(1-7) to angiotensin-(1-5) and can lead to elevation of angiotensin-(1-7) levels in plasma and tissue. In animal models, angiotensin-(1-7) itself causes or enhances vasodilation and inhibits vascular contractions to angiotensin II. The function of angiotensin-(1-5) is unknown. We investigated whether angiotensin-(1-7) and angiotensin-(1-5) inhibit ACE or antagonize angiotensin-induced vasoconstrictions in humans. ACE activity in plasma and atrial tissue was inhibited by angiotensin-(1-7) up to 100%, with an IC(50) of 3.0 and 4.0 micromol/L, respectively. In human internal mammary arteries, contractions induced by angiotensin I and II and the non-ACE-specific substrate [Pro(11),D-Ala(12)]-angiotensin I were antagonized by angiotensin-(1-7) (10(-5) mol/L) in a noncompetitive way, with a 60% inhibition of the maximal response to angiotensin II. Contractions to ACE-specific substrate [Pro(10)]-angiotensin I were also inhibited, an effect only partly accounted for by antagonism of angiotensin II. Angiotensin-(1-5) inhibited plasma ACE activity with a potency equal to that of angiotensin I but had no effect on arterial contractions. In conclusion, angiotensin-(1-7) blocks angiotensin II-induced vasoconstriction and inhibits ACE in human cardiovascular tissues. Angiotensin-(1-5) only inhibits ACE. These results show that angiotensin-(1-7) may be an important modulator of the human renin-angiotensin system.  (+info)

Non-cyclic AMP-dependent, positive inotropic cyclodepsipeptides with negative chronotropy. (66/4530)

The effects of natural cyclodepsipeptides (CDPs) on isolated rat cardiac tissue preparations were examined in vitro. Destruxin A, destruxin B (DB), roseotoxin B (RB), and roseocardin (RC), a novel CDP, each caused a concentration-dependent increase in the contraction force of the right atrium and the papillary and trabecular muscles of the right ventricle at 0.6 to 600 microM. RB, destruxin A, and DB did not affect the half-decay time of relaxation of the papillary muscles, but RC slightly prolonged it, although to a much lesser extent than BA 41899, a calcium sensitizer. This inotropic effect is accompanied by a prolongation of the automatic atrial contraction intervals. The RB-induced increase in the contraction force of papillary muscle was not affected by phentolamine, propranolol, pyrilamine, or cimetidine. RB- and RC-induced increases in the contraction force of papillary muscles were not affected by 3-isobutyl-1-methylxanthine or carbachol. Neither peptide changed the cyclic AMP levels in trabecular muscles. Neither RB nor RC affected the activity of Na(+),K(+)-ATPase from rat kidney. Neither RB, RC, nor DB affected the resting membrane potential or the apparent input resistance of papillary muscles. These results suggest that these CDPs produce both non-cyclic AMP-dependent positive inotropic and negative chronotropic effects.  (+info)

Cardiac M(2) muscarinic cholinoceptor activation by human chagasic autoantibodies: association with bradycardia. (67/4530)

OBJECTIVE: To assess whether exposure of cardiac muscarinic acetylcholine receptors (mAChR) to activating chagasic antimyocardial immunoglobulins results in bradycardia and other dysautonomic symptoms associated with the regulation of heart rate. METHODS: Trypanosoma cruzi infected patients with bradycardia and other abnormalities in tests of the autonomic nervous system were studied and compared with normal subjects. Antipeptide antibodies in serum were demonstrated by an enzyme linked immunosorbent assay using a synthetic 24-mer-peptide corresponding antigenically to the second extracellular loop of the human heart M(2) mAChR. The functional effect of affinity purified antipeptide IgG from chagasic patients on spontaneous beating frequency and cAMP production of isolated normal rat atria was studied. RESULTS: There was a strong association between the finding of antipeptide antibodies in chagasic patients and the presence of basal bradycardia and an altered Valsalva manoeuvre (basal bradycardia: chi(2) = 37.5, p < 0. 00001; Valsalva manoeuvre: chi(2) = 70.0, p < 0.00001). The antipeptide autoantibodies also showed agonist activity, decreasing the rate of contraction and cAMP production. The effects on rat atria resembled the effects of the authentic agonist and those of the total polyclonal chagasic IgG, being selectively blunted by atropine and AF-DX 116, and neutralised by the synthetic peptide corresponding in amino acid sequence to the second extracellular loop of the human M(2) mAChR. CONCLUSIONS: There is an association between circulating antipeptide autoantibodies in chagasic patients and the presence of bradycardia and other dysautonomic symptoms. Thus these autoantibodies are a marker of autoimmune cardiac autonomic dysfunction. The results support the hypothesis that autoimmune mechanisms play a role in the pathogenesis of chagasic cardioneuromyopathy.  (+info)

Analysis of the atypical characteristics of adenosine receptors mediating negative inotropic and chronotropic responses of guinea-pig isolated atria and papillary muscles. (68/4530)

1. Adenosine receptor(s) mediating negative inotropy of paced left atria, isoprenaline-stimulated paced left atria and papillary muscles, and negative chronotropy of spontaneously beating right atria were characterized. 2. Isometric tension of guinea-pig isolated paced left atria and left ventricular papillary muscles and rate of contraction of spontaneously beating right atria were recorded. Papillary muscles were pre-stimulated with isoprenaline (1x10-8 M). Concentration-response curves (CRCs) for tension or rate reduction by N6-cyclopentyladenosine (CPA), the stereoisomers of N6-(2-phenylisopropyl)adenosine ((+)-PIA and (-)-PIA), 5'-(N-carboxamido)adenosine (NECA), N6-2-(4-aminophenyl)ethyladenosine (APNEA) and N6-(3-iodobenzyl)adenosine-5'-N-methyuromide (IB-MECA) revealed a potency order of CPA=(-)-PIA>NECA in right atria and papillary muscles, which is consistent with involvement of A1-receptors. The potency order in left atria was CPA=NECA>(-)-PIA>(+)-PIA>APNEA, which is not typical of A1 adenosine receptors. Weak activity of APNEA and IB-MECA discounts involvement of A3 receptors. 3. pA2 values for the antagonism of CPA by 8(p-sulfophenyl)theophylline (8-SPT) were calculated from Schild plots (log concentration-ratio against log 8-SPT concentration), the unity slopes of which indicated competitive antagonism. The pA2 value in the papillary muscles was significantly higher than for atrial preparations, indicating a possible difference in receptor characteristics between atrial and papillary muscle responses. 4. In left and right atria there was a limit to the displacement of the CPA CRCs at higher concentrations of 8-SPT. The 8-SPT-resistant component of the response is suggested to arise from duality of coupling of a common A1 receptor through either different G proteins or G protein subunits to independent transduction pathways. The results with papillary muscles can be explained by a typical A1 receptor coupled to a single transduction pathway.  (+info)

The AV junction region of the heart: a comprehensive study correlating gross anatomy and direct three-dimensional analysis. Part I. Architecture and topography. (69/4530)

There is little detailed knowledge of the architecture of the AV junction region, the cytoarchitecture of the AV node or of its atrial connections. In the present study, the gross anatomy and topography of intracardiac structures in 21 adult canine hearts were photographically compared in whole and dissected hearts and tissue blocks and serial histologic sections made in three orthogonal planes. There are seven major new findings: 1) A coronary sinus fossa exists at the crux of the heart. It separates the right medial atrial wall (MAW) superoposterior region from the left atrium, its floor is the coronary sinus, and it carries the medial atrionodal bundle and proximal AV bundle on its right wall. 2) The posterior MAW forms two isolated bridges of myocardium as it surrounds the coronary sinus ostium, is isolated from the sinus venarum with crista terminalis and interatrial septum-by the floor of the inferior vena cava, and the narrow bridges link the posterior atrial wall to the mid MAW. 3) The tendon of Todaro has both epicardial and endocardial exposures, terminates in the superoposterior MAW and its medial aspect is adjacent sequentially to the medial atrionodal bundle and proximal AV bundle. 4) Only ordinary myocardium contacts the anulus fibrosus. 5) The ventricular septum's shoulder is humped shape posteriorly, is completely overlaid by anular myocardium and the medial leaflet and is joined by struts of papillary muscle. 6) The membranous septum joins the anterior ventricular septum to the crista supraventricularis, forms part of the posterior noncoronary and right aortic valve sinus walls and encases the right bundle branch. 7) The specialized conduction tissues, the superior, medial and lateral atrionodal bundles, the proximal AV bundle, AV node, distal AV bundle and right bundle branch are subjacent to MAW epicardium outside the right atrium, share regular intracardiac relationships with topographic landmarks and the medial atrionodal bundle, terminal superior atrionodal bundle, the proximal AV bundle and AV node are aligned to the medial leg of Koch's triangle. Thus, atrial myocardium of the AV junction region is that of the MAW. The floor of the inferior vena cava forms a natural barrier to impulse transmission along the full extent of the posterior MAW. The specialized tissues are outside of the MAW. Anatomic landmarks form reliable topographic landmarks for the specialized AV junction region tissues. A knowledge of the association of the specialized conduction tissues with specific regions of the MAW is useful in localizing the tissues and along with the coronary sinus fossa provides several extracardiac approaches.  (+info)

Relation between ligament of Marshall and adrenergic atrial tachyarrhythmia. (70/4530)

BACKGROUND: The mechanism of the adrenergic atrial tachyarrhythmia is unclear. We hypothesize that the ligament of Marshall (LOM) is sensitive to adrenergic stimulation and may serve as a source of the adrenergic atrial tachyarrhythmia. METHODS AND RESULTS: We performed computerized mapping studies in isolated-perfused canine left atrial tissues from normal dogs (n=9) and from dogs with chronic atrial fibrillation (AF) induced by 10 to 41 weeks of rapid pacing (n=3). Before isoproterenol, spontaneous activity occurred in only one normal tissue (cycle length, CL >1300 ms). During isoproterenol infusion, automatic rhythm was induced in both normal tissues (CL=578+/-172 ms) and AF tissues (CL=255+/-29 ms, P<0.05). The origin of spontaneous activity was mapped to the LOM. In the AF tissues, but not the normal tissues, we observed the transition from rapid automatic activity to multiple wavelet AF. Ablation of the LOM terminated the spontaneous activity and prevented AF. Immunocytochemical studies of the LOM revealed muscle tracts surrounded by tyrosine hydroxylase-positive (sympathetic) nerves. CONCLUSIONS: We conclude that the LOM is richly innervated by sympathetic nerves and serves as a source of isoproterenol-sensitive focal automatic activity in normal canine atrium. The sensitivity to isoproterenol is upregulated after long-term rapid pacing and may contribute to the development of AF in this model.  (+info)

Atrial L-type Ca2+ currents and human atrial fibrillation. (71/4530)

Chronic atrial fibrillation (AF) is characterized by decreased atrial contractility, shortened action potential duration, and decreased accommodation of action potential duration to changes in activation rate. Studies on experimental animal models of AF implicate a reduction in L-type Ca2+ current (I(Ca)) density in these changes. To evaluate the effect of AF on human I(Ca), we compared I(Ca) in atrial myocytes isolated from 42 patients in normal sinus rhythm at the time of cardiac surgery with that of 11 chronic AF patients. I(Ca) was significantly reduced in the myocytes of patients with chronic AF (mean -3.35+/-0.5 pA/pF versus -9.13+/-1. 0 pA/pF in the controls), with no difference between groups in the voltage dependence of activation or steady-state inactivation. Although I(Ca) was lower in myocytes from the chronic AF patients, their response to maximal beta-adrenergic stimulation was not impaired. Postoperative AF frequently follows cardiac surgery. Half of the patients in the control group (19/38) of this study experienced postoperative AF. Whereas chronic AF is characterized by reduced atrial I(Ca), the patients with the greatest I(Ca) had an increased incidence of postoperative AF, independent of patient age or diagnosis. This observation is consistent with the concept that calcium overload may be an important factor in the initiation of AF. The reduction in functional I(Ca) density in myocytes from the atria of chronic AF patients may thus be an adaptive response to the arrhythmia-induced calcium overload.  (+info)

Restricted expression of cardiac myosin genes reveals regulated aspects of heart tube assembly in zebrafish. (72/4530)

The embryonic vertebrate heart is divided into two major chambers, an anterior ventricle and a posterior atrium. Although the fundamental differences between ventricular and atrial tissues are well documented, it is not known when and how cardiac anterior-posterior (A-P) patterning occurs. The expression patterns of two zebrafish cardiac myosin genes, cardiac myosin light chain 2 (cmlc2) and ventricular myosin heavy chain (vmhc), allow us to distinguish two populations of myocardial precursors at an early stage, well before the heart tube forms. These myocardial subpopulations, which may represent the ventricular and atrial precursors, are organized in a medial-lateral pattern within the precardiac mesoderm. Our examinations of cmlc2 and vmhc expression throughout the process of heart tube assembly indicate the important role of an intermediate structure, the cardiac cone, in the conversion of this early medial-lateral pattern into the A-P pattern of the heart tube. To gain insight into the genetic regulation of heart tube assembly and patterning, we examine cmlc2 and vmhc expression in several zebrafish mutants. Analyses of mutations that cause cardia bifida demonstrate that the achievement of a proper cardiac A-P pattern does not depend upon cardiac fusion. On the other hand, cardiac fusion does not ensure the proper A-P orientation of the ventricle and atrium, as demonstrated by the heart and soul mutation, which blocks cardiac cone morphogenesis. Finally, the pandora mutation interferes with the establishment of the early medial-lateral myocardial pattern. Altogether, these data suggest new models for the mechanisms that regulate the formation of a patterned heart tube and provide an important framework for future analyses of zebrafish mutants with defects in this process.  (+info)