Enhancing health benefits of berries through phenolic antioxidant enrichment: focus on cranberry. (41/180)

Emerging epidemiological evidence is increasingly pointing to the beneficial effects of fruits and vegetables in managing chronic and infectious diseases. These beneficial effects are now suggested to be due to the constituent phenolic phytochemicals having antioxidant activity. Cranberry like other fruits is also rich in phenolic phytochemicals such as phenolic acids, flavonoids and ellagic acid. Consumption of cranberry has been historically been linked to lower incidences of urinary tract infections and has now been shown to have a capacity to inhibit peptic ulcer-associated bacterium, Helicobacter pylori. Isolated compounds from cranberry have also been shown to reduce the risk of cardiovascular diseases. Recent evidence suggests the ability of phytochemical components in whole foods in being more effective in protectively supporting human health than compared to isolated individual phenolic phytochemicals. This implies that the profile of phenolic phytochemicals determines the functionality of the whole food as a result of synergistic interaction of constituent phenolic phytochemicals. Solid state bioprocessing using food grade fungi common in Asian food cultures as well as cranberry phenolic synergies through the addition of functional biphenyls such as ellagic acid and rosmarinic acid along with processed fruit extracts have helped to advance these concepts. These strategies could be further explored to enrich cranberry and cranberry products with functional phytochemicals and further improve their functionality for enhancing health benefits.  (+info)

Probiotics, prebiotics and antioxidants as functional foods. (42/180)

The term "functional foods" comprises some bacterial strains and products of plant and animal origin containing physiologically active compounds beneficial for human health and reducing the risk of chronic diseases. Among the best known functional compounds probiotics, prebiotics and natural antioxidants should be given as examples. These substances can be obtained by biotechnological methods and by extraction from plant or animal tissues.  (+info)

Markedly different gene expression in wheat grown with organic or inorganic fertilizer. (43/180)

Nitrogen is the major determinant of crop yield and quality and the precise management of nitrogen fertilizer is an important issue for farmers and environmentalists. Despite this, little is known at the level of gene expression about the response of field crops to different amounts and forms of nitrogen fertilizer. Here we use expressed sequence tag (EST)-based wheat microarrays in combination with the oldest continuously running agricultural experiment in the world to show that gene expression is significantly influenced by the amount and form of nitrogenous fertilizer. In the Broadbalk winter wheat experiment at Rothamsted in the United Kingdom and at three other diverse test sites, we show that specific genes have surprisingly different expression levels in the grain endosperm when nitrogen is supplied either in an organic or an inorganic form. Many of the genes showing differential expression are known to participate in nitrogen metabolism and storage protein synthesis. However, others are of unknown function and therefore represent new leads for future investigation. Our observations show that specific gene expression is diagnostic for use of organic sources of nitrogen fertilizer and may therefore have useful applications in defining the differences between organically and conventionally grown wheat. [The sequences reported in this paper have been deposited in the GenBank database (accession nos. AL 208216-AL 831324).]  (+info)

Nutrigenomics and nutrigenetics: the emerging faces of nutrition. (44/180)

The recognition that nutrients have the ability to interact and modulate molecular mechanisms underlying an organism's physiological functions has prompted a revolution in the field of nutrition. Performing population-scaled epidemiological studies in the absence of genetic knowledge may result in erroneous scientific conclusions and misinformed nutritional recommendations. To circumvent such issues and more comprehensively probe the relationship between genes and diet, the field of nutrition has begun to capitalize on both the technologies and supporting analytical software brought forth in the post-genomic era. The creation of nutrigenomics and nutrigenetics, two fields with distinct approaches to elucidate the interaction between diet and genes but with a common ultimate goal to optimize health through the personalization of diet, provide powerful approaches to unravel the complex relationship between nutritional molecules, genetic polymorphisms, and the biological system as a whole. Reluctance to embrace these new fields exists primarily due to the fear that producing overwhelming quantities of biological data within the confines of a single study will submerge the original query; however, the current review aims to position nutrigenomics and nutrigenetics as the emerging faces of nutrition that, when considered with more classical approaches, will provide the necessary stepping stones to achieve the ambitious goal of optimizing an individual's health via nutritional intervention.  (+info)

Concept of a nutritious food: toward a nutrient density score. (45/180)

The American diet is said to be increasingly energy-rich but nutrient-poor. To help improve the nutrient-to-energy ratio, the 2005 Dietary Guidelines for Americans recommend that consumers replace some foods in their diets with more nutrient-dense options. Such dietary guidance presupposes the existence of a nutrient density standard. However, a review of the literature shows that the concept of a nutritious food is not based on any consistent standards or criteria. In many cases, healthful foods are defined by the absence of problematic ingredients-fat, sugar, and sodium-rather than by the presence of any beneficial nutrients they might contain. Past attempts to quantify the nutrient density of foods have been based on a variety of calories-to-nutrient scores, nutrients-per-calorie indexes, and nutrient-to-nutrient ratios. The naturally nutrient rich (NNR) score, which is based on mean percentage daily values (DVs) for 14 nutrients in 2000 kcal food, can be used to assign nutrient density values to foods within and across food groups. Use of the NNR score allows consumers to identify and select nutrient-dense foods while permitting some flexibility where the discretionary calories are concerned. This approach has implications for food labeling, nutritional policy making, and consumer education. The Food and Drug Administration has considered approving nutrient claims based on the ratio of a beneficial nutrient to the food's energy content, as opposed to a specified minimum amount of a nutrient per serving size. Given the current dietary trends, the nutrient density approach can be a valuable tool for nutrition education and dietary guidance.  (+info)

Organic diets significantly lower children's dietary exposure to organophosphorus pesticides. (46/180)

We used a novel study design to measure dietary organophosphorus pesticide exposure in a group of 23 elementary school-age children through urinary biomonitoring. We substituted most of children's conventional diets with organic food items for 5 consecutive days and collected two spot daily urine samples, first-morning and before-bedtime voids, throughout the 15-day study period. We found that the median urinary concentrations of the specific metabolites for malathion and chlorpyrifos decreased to the nondetect levels immediately after the introduction of organic diets and remained nondetectable until the conventional diets were reintroduced. The median concentrations for other organophosphorus pesticide metabolites were also lower in the organic diet consumption days; however, the detection of those metabolites was not frequent enough to show any statistical significance. In conclusion, we were able to demonstrate that an organic diet provides a dramatic and immediate protective effect against exposures to organophosphorus pesticides that are commonly used in agricultural production. We also concluded that these children were most likely exposed to these organophosphorus pesticides exclusively through their diet. To our knowledge, this is the first study to employ a longitudinal design with a dietary intervention to assess children's exposure to pesticides. It provides new and persuasive evidence of the effectiveness of this intervention.  (+info)

Nutrition function, health and related claims on packaged Australian food products--prevalence and compliance with regulations. (47/180)

Australia and New Zealand are currently reviewing the regulations governing nutrition function, health and related claims on foods. Health claims currently are not permitted on food labels, with one exception. The aim of this study was to describe the use of such claims on packaged food for sale in Australia (excluding nutrient content claims) prior to any changes to the regulations, and measure compliance with existing regulations. A survey was conducted of the labelling of 7850 products (including multiple pack sizes of individual foods) in 47 different food categories on sale in New South Wales in 2003. A total of 2098 nutrition function, health or related claims and 12 therapeutic claims were recorded. Fourteen percent of products carried some sort of claim. If nutrient function and general health maintenance claims are excluded, 8.1% of products carried a health or related claim. Using the claims categorisation proposed by Food Standards Australia New Zealand for a new standard on claims, general-level claims were found on 9.8% of products and high-level and therapeutic claims (illegal at the time) on 1.2%. The food categories with the highest proportion of products carrying claims were sports drinks (92%), energy drinks (84%), sports bars (57%) and breakfast cereals (54%). 118 high-level and therapeutic claims did not conform to current food standards and there were many general-level claims for ingredient benefits that were unlikely to be able to be scientifically substantiated. The results of this survey suggest that more than 5% of claims were not complying with the current regulations and that the standards were not being fully enforced. To be effective, the new standard will need to be accompanied by clear guidelines for manufacturers on requirements for substantiating claims. Comprehensive education and enforcement frameworks also will be needed, to reduce the number of illegal or apparently unsubstantiated claims.  (+info)

Effect of feeding systems on omega-3 fatty acids, conjugated linoleic acid and trans fatty acids in Australian beef cuts: potential impact on human health. (48/180)

The influence of feeding systems on the levels of functional lipids and other fatty acid concentrations in Australian beef was examined. Rump, strip loin and blade cuts obtained from grass feeding, short-term grain feeding (80 days; STGF) and long-term grain feedlot rations (150-200 days; LTFL) were used in the present study. The typical Australian feedlot ration contains more than 50% barley and/or sorghum and balanced with whole cottonseed and protein meals were used as feed for STGF and LTFL regimens. Meat cuts from 18 cattle for each feeding regimen were trimmed of visible fat and connective tissue and then minced (300 g lean beef); replicate samples of 7 g were used for fatty acid (FA) analysis. There was a significantly higher level of total omega-3 (n-3) and long chain n-3 FA in grass-fed beef (P< 0.0001) than the grain-fed groups regardless of cut types. Cuts from STGF beef had significantly reduced levels of n-3 FA and conjugated linoleic acid (CLA) and similar levels of saturated, monounsaturated and n-6 FA compared with grass feeding (P < 0.001). Cuts from LTFL beef had higher levels of saturated, monounsaturated,n-6 FA and trans 18:1 than similar cuts from the other two groups (P<0.01), indicating that increased length of grain feeding was associated with more fat deposited in the carcass. There was a step-wise increase in trans 18:1 content from grass to STGF to LTGF, suggesting grain feeding elevates trans FA in beef, probably because of increased intake of 18:2n-6. Only grass-fed beef reached the target of more than 30mg of long chain n-3 FA/100 g muscle as recommended by Food Standard Australia and New Zealand for a food to be considered a source of omega-3 fatty acids. The proportions of trans 18:1 and n-6 FA were higher (P<0.001) for both grain-fed beef groups than grass-fed beef. Data from the present study show that grain feeding decreases functional lipid components (long chain n-3 FA and CLA) in Australian beef regardless of meat cuts, while increasing total trans 18:1 and saturated FA levels.  (+info)