Comparison of the effects of halothane, isoflurane and methoxyflurane on the electroencephalogram of the horse. (9/1763)

We have investigated in eight ponies the effects of three different end-tidal concentrations of halothane, isoflurane and methoxyflurane on median (F50) and 95% spectral edge (F95) frequencies of the EEG and the second differential (DD) of the middle latency auditory evoked potential (MLAEP). The three concentrations of each agent were chosen to represent approximately the minimum alveolar concentration (MAC), 1.25 MAC and 1.5 MAC for each agent. During halothane anaesthesia, F95 decreased progressively as halothane concentration increased, from mean 13.9 (SD 2.6) at 0.8% to 11.9 (1.1) at 1.2%. DD was lower during anaesthesia with the highest concentration (21 (6.5)) compared with the lowest (27.6 (11.4)). There were no significant changes in F50. During isoflurane anaesthesia, there was a small, but significant increase in F95 between the intermediate and highest concentrations (10.2 (1.5) to 10.8 (1.6)). There were no changes in F50 and DD. Values of F95, F50 and DD at all isoflurane concentrations were similar to those of halothane at the highest concentration. During methoxyflurane anaesthesia, F95 and F50 decreased progressively as methoxyflurane concentration was increased, from 21.3 (0.7) and 6.5 (1), respectively, at 0.26%, to 20.1 (0.6) and 5.6 (0.8), respectively, at 0.39%. DD was lower during anaesthesia with the highest concentration of methoxyflurane (25.7 (7.8)) compared with the lowest (39.7 (20.6)). Values of F95, F50 and DD at all methoxyflurane concentrations were higher than those seen with halothane at the lowest concentration. The different relative positions of the dose-response curves for EEG and MLAEP changes compared with antinociception (MAC) changes suggest differences in the mechanisms of action of these three agents. These differences may explain the incomplete adherence to the Meyer-Overton rule.  (+info)

Halothane induces calcium release from human skinned masseter muscle fibers. (10/1763)

BACKGROUND: An increase in masseter muscle tone in response to halothane or succinylcholine anesthesia (or both) can be observed in healthy persons. Thus the authors compared the fiber-type halothane and succinylcholine sensitivities in human masseter and vastus lateralis muscles. METHODS: Masseter and vastus lateralis muscle segments were obtained from 13 and 9 healthy persons, respectively. After chemical skinning of a single fiber and loading the sarcoplasmic reticulum with Ca++ 0.16 microM solution, halothane (0.5-4 vol% bubbled in the incubating solution), succinylcholine (0.1 microM to 10 mM), or both sensitivities were defined as the concentration inducing more than 10% of the maximum tension obtained by application of 16 microM Ca++ solution. The myofilament response to Ca++ was studied with and without halothane by observing the isometric tension of skinned masseter fibers challenged with increasing concentrations of Ca++. Muscle fiber type was determined by the difference in strontium-induced tension measurements. RESULTS: A significant difference in halothane sensitivity was found between type 1 masseter fibers (0.6+/-0.2 vol%; mean +/- SD) versus type 1 (2.7+/-0.6 vol%) and type 2 vastus lateralis muscle (2.5+/-0.4 vol%). Succinylcholine did not induce Ca++ release by the sarcoplasmic reticulum. In the masseter muscle, 0.75 vol% halothane decreased the maximal activated tension by 40% but did not change the Ca++ concentration that yields 50% of the maximal tension. CONCLUSIONS: The very low halothane threshold for Ca++ release from the masseter muscle usually could be counteracted by a direct negative inotropic effect on contractile proteins. However, halothane may increase the sensitivity of the sarcoplasmic reticulum Ca++ release to succinylcholine-induced depolarization, leading to an increase in masseter muscle tone.  (+info)

Contribution of peripheral chemoreception to the depression of the hypoxic ventilatory response during halothane anesthesia in cats. (11/1763)

BACKGROUND: The effects of inhalational anesthetics on the hypoxic ventilatory response are complex. This study was designed to determine the contribution of peripheral chemoreception to the depression of hypoxic ventilatory response seen with halothane anesthesia. METHODS: Cats were anesthetized with pentobarbital sodium and alpha-chloralose and artificially ventilated. Respiratory output was evaluated by phasic inspiratory activity of the phrenic nerve. In 12 cats, this activity was measured during inhalation of an hypoxic gas mixture with halothane, 0, 0.1, and 0.8%, with intact or denervated carotid bodies. In 10 cats, a carotid body was isolated from the systemic circulation and perfused with hypoxic Krebs-Ringer solution equilibrated with halothane, 0, 0.1, and 0.8%. RESULTS: The hypoxic ventilatory response was depressed in a dose-dependent manner during halothane anesthesia. In carotid body perfusion studies, the response was significantly depressed only with halothane, 0.80%. CONCLUSION: The hypoxic ventilatory response is depressed by a high dose of halothane through a peripheral effect at the carotid body.  (+info)

Volatile anesthetics increase intracellular calcium in cerebrocortical and hippocampal neurons. (12/1763)

BACKGROUND: An increase in intracellular calcium concentration ([Ca2+]i) in neurons has been proposed as an important effect of volatile anesthetics, because they alter signaling pathways that influence neurotransmission. However, the existing data for anesthetic-induced increases in [Ca2+]i conflict. METHODS: Changes in [Ca2+]i were measured using fura-2 fluorescence spectroscopy in rat cortical brain slices at 90, 185, 370, and 705 microM isoflurane. To define the causes of an increase in [Ca2+]i, slices were studied in Ca2+-free medium, in the presence of Ca2+-channel blockers, and in the presence of the Ca2+-release inhibitor azumolene. The authors compared the effect of the volatile anesthetic with that of the nonanesthetic compound 1,2-dichlorohexafluorocyclobutane. Single-dose experiments in CA1 neurons in hippocampal slices with halothane (360 microM) and in acutely dissociated CA1 neurons with halothane (360 microM) and isoflurane (445 microM) also were performed. RESULTS: Isoflurane at 0.5, 1, and 2 minimum alveolar concentrations increased basal [Ca2+]i in cortical slices in a dose-dependent manner (P < 0.05). This increase was not altered by Ca2+-channel blockers or Ca2+-free medium but was reduced 85% by azumolene. The nonanesthetic 1,2-dichlorohexafluorocyclobutane did not increase [Ca2+]i. In dissociated CA1 neurons, isoflurane reversibly increased basal [Ca2+]i by 15 nM (P < 0.05). Halothane increased [Ca2+]i in dissociated CA1 neurons and CA1 neurons in hippocampal slices by approximately 30 nM (P < 0.05). CONCLUSIONS: (1) Isoflurane and halothane reversibly increase [Ca2+]i in isolated neurons and in neurons within brain slices. (2) The increase in [Ca2+]i is caused primarily by release from intracellular stores. (3) Increases in [Ca2+]i occur with anesthetics but not with the nonanesthetic 1,2-dichlorohexafluorocyclobutane.  (+info)

Recovery after halothane anaesthesia induced with thiopental, propofol-alfentanil or halothane for day-case adenoidectomy in small children. (13/1763)

We studied recovery from halothane anaesthesia in 93 children, aged 1-3 yr, undergoing day-case adenoidectomy. Children were allocated randomly to receive thiopental 5 mg kg-1 (group TH), alfentanil 10 micrograms kg-1 and propofol 3 mg kg-1 (group PAH) or 5% halothane (group HH) for induction of anaesthesia. In group TH, tracheal intubation was facilitated with succinylcholine (suxamethonium) 1.5 mg kg-1. In groups PAH and HH, tracheal intubation was performed without neuromuscular block, and succinylcholine was used only if required. Anaesthesia was maintained with 1-3% halothane during spontaneous respiration. Times to achieving predetermined recovery end-points were recorded. Quality of recovery was assessed using a score of 1-9 (best to worst) for sedation, crying, restlessness and agitation. A postoperative questionnaire was used to determine the well-being of the child at home, 24 h after operation. Emergence from anaesthesia (response to non-painful stimuli) occurred earlier in group HH (mean 9 (SD 6) min) than in groups PAH (13 (6) min, P < 0.01) and TH (18 (14) min, P < 0.01). Sitting up, walking and home readiness were achieved earlier in groups PAH and HH than in group TH (P < 0.05 for each variable). Children in group TH were more sedated during the first 30 min after anaesthesia than those in the two other groups (P < 0.05) while emergence-related delirium was more common in group HH than in group TH (P < 0.01). Well-being at home was similar in all groups. We conclude that induction of halothane anaesthesia with propofol-alfentanil or halothane provided more rapid recovery and earlier discharge than that with thiopental.  (+info)

ATX II, a sodium channel toxin, sensitizes skeletal muscle to halothane, caffeine, and ryanodine. (14/1763)

BACKGROUND: The function or expression of subtypes of the sodium ion (Na+) channel is altered in biopsies or cultures of skeletal muscle from many persons who are susceptible to malignant hyperthermia (MH). ATX II, a specific Na+ channel toxin from a sea anemone, causes delayed inactivation of the channel similar to that seen in cell cultures of MH muscle. ATX II was added to skeletal muscle to determine whether altered Na+ channel function could increase the sensitivity of normal skeletal muscle to agents (halothane, caffeine, ryanodine) to which MH muscle is hypersensitive. METHODS: Studies were performed of fiber bundles from the vastus lateralis muscle of persons who were deemed not MH susceptible (MH-) or MH susceptible (MH+) according to the MH diagnostic test and of strips of diaphragm muscle from rats. Preparations in a tissue bath containing Krebs solution were connected to a force transducer. ATX II was introduced 5 min before halothane, caffeine, or ryanodine. RESULTS: ATX II increased the magnitude of contracture to halothane in preparations from most MH-, but not MH+, human participants. After ATX II treatment, preparations from 9 of 24 MH- participants generated contractures to halothane, 3%, that were of the same magnitude as those from MH+ participants. Preparations from four of six ATX II-treated healthy participants also gave responses of the same magnitude as those of MH-susceptible participants to a graded halothane challenge (0.5-3%). The contractures to bolus doses of halothane in specimens from male participants were more than three times larger than the contractures in specimens from female participants. In rat muscle, ATX II increased the magnitude of contracture to caffeine (2 mM) and decreased the time to produce a 1-g contracture to ryanodine (1 microM). CONCLUSIONS: ATX II, which causes delayed inactivation of the Na+ channel in cell cultures similar to that reported in cultures of MH+ skeletal muscle, increased the sensitivity of normal muscle to three agents to which MH+ muscle is hypersensitive. The increased sensitivity to halothane, 3%, occurred in most (79%), but not all, MH- participants, and this effect was most evident in male participants. Therefore, abnormal function of the Na+ channel, even if it is a secondary event in MH, may contribute to a positive contracture test result for MH.  (+info)

Modulation of receptive field properties of thalamic somatosensory neurons by the depth of anesthesia. (15/1763)

Modulation of receptive field properties of thalamic somatosensory neurons by the depth of anesthesia. The dominant frequency of electrocorticographic (ECoG) recordings was used to determine the depth of halothane or urethan anesthesia while recording extracellular single-unit responses from thalamic ventral posterior medial (VPM) neurons. A piezoelectric stimulator was used to deflect individual whiskers to assess the peak onset latency, magnitude, probability of response, and receptive field (RF) size. There was a predictable increase in the dominant ECoG frequency from deep stage IV to light stage III-1 anesthetic levels. There was no detectable frequency at stage IV, a 1- to 2-Hz dominant frequency at stage III-4, 3-4 Hz at stage III-3, 5-7 Hz at stage III-2, and a dual 6- and 10- to 13-Hz pattern at stage III-1. Reflexes and other physical signs showed a correlation with depth of anesthesia but exhibited too much overlap between stages to be used as a criterion for any single stage. RF size and peak onset latency of VPM neurons to whisker stimulations increased between stage III-4 and III-1. A dramatic increase in RF size and response latency occurred at the transition from stage III-3 (RF size approximately 2 whiskers, latency approximately 7 ms) to stage III-2 (RF size approximately 6 whiskers, latency approximately 11 ms). Response probability and magnitude decreased from stage III-4 to stage III-3 and III-2. No responses were ever evoked in VPM cells by vibrissa movement at stage IV. These changes in VPM responses as a function of anesthetic depth were seen only when the nucleus principalis (PrV) and nucleus interpolaris (SpVi) trigeminothalamic pathways were both intact. Eliminating SpVi inputs to VPM, either by cutting the primary trigeminal afferent fibers to SpVi or cutting axons projecting from SpVi to VPM, immediately reduced the RF size to fewer than three whiskers. In addition, the predictable changes in VPM response probability, response magnitude, and peak onset latency at different anesthetic depths were all absent after SpVi pathway interruption. We conclude that 1) the PrV input mediates the near "one-to-one" correspondence between a neuronal response in VPM and a single mystacial whisker, 2) in contrast, the SpVi input to VPM is primarily responsible for the RF properties of VPM neurons at light levels of anesthesia and presumably in the awake animal, and 3) alterations in VPM responses produced by changing the depth of anesthesia are due to its selective influence on the properties mediated by SpVi inputs at the level of the thalamus.  (+info)

Pulmonary edema: a complication following dental treatment under general anesthesia. (16/1763)

This article describes pulmonary edema in two young, physically healthy individuals following routine intensive dental treatment under general anesthesia. The etiology, diagnosis, prognosis, and treatment are discussed. This paper demonstrates that young, healthy patients may develop pulmonary edema in the perianesthesia period or even during anesthesia itself. Obstructive events, which occur especially in the post extubation period, may trigger this condition, as may other well-known phenomena. Early diagnosis and intensive treatment are mandatory in order to effectively resolve the situation.  (+info)