Haloferax sulfurifontis sp. nov., a halophilic archaeon isolated from a sulfide- and sulfur-rich spring. (9/22)

A pleomorphic, extremely halophilic archaeon (strain M6(T)) was isolated from a sulfide- and sulfur-rich spring in south-western Oklahoma (USA). It formed small (0.8-1.0 mm), salmon pink, elevated colonies on agar medium. The strain grew in a wide range of NaCl concentrations (6 % to saturation) and required at least 1 mM Mg(2+) for growth. Strain M6(T) was able to reduce sulfur to sulfide anaerobically. 16S rRNA gene sequence analysis indicated that strain M6(T) belongs to the family Halobacteriaceae, genus Haloferax; it showed 96.7-98.0 % similarity to other members of the genus with validly published names and 89 % similarity to Halogeometricum borinquense, its closest relative outside the genus Haloferax. Polar lipid analysis and DNA G+C content further supported placement of strain M6(T) in the genus Haloferax. DNA-DNA hybridization values, as well as biochemical and physiological characterization, allowed strain M6(T) to be differentiated from other members of the genus Haloferax. A novel species, Haloferax sulfurifontis sp. nov., is therefore proposed to accommodate the strain. The type strain is M6(T) (=JCM 12327(T)=CCM 7217(T)=DSM 16227(T)=CIP 108334(T)).  (+info)

RNA polyadenylation in Archaea: not observed in Haloferax while the exosome polynucleotidylates RNA in Sulfolobus. (10/22)

The addition of poly(A) tails to RNA is a phenomenon common to all organisms examined so far. No homologues of the known polyadenylating enzymes are found in Archaea and little is known concerning the mechanisms of messenger RNA degradation in these organisms. Hyperthermophiles of the genus Sulfolobus contain a protein complex with high similarity to the exosome, which is known to degrade RNA in eukaryotes. Halophilic Archaea, however, do not encode homologues of these eukaryotic exosome components. In this work, we analysed RNA polyadenylation and degradation in the archaea Sulfolobus solfataricus and Haloferax volcanii. No RNA polyadenylation was detected in the halophilic archaeon H. volcanii. However, RNA polynucleotidylation occurred in hyperthermophiles of the genus Sulfolobus and was mediated by the archaea exosome complex. Together, our results identify the first organism without RNA polyadenylation and show a polyadenylation activity of the archaea exosome.  (+info)

Haloferax prahovense sp. nov., an extremely halophilic archaeon isolated from a Romanian salt lake. (11/22)

A novel halophilic archaeon, strain TL6T, was isolated from Telega Lake, a hypersaline environment in Prahova county, Romania. Strain TL6T was able to grow in media with a salt concentration of between 2.5 and 5.2 M, with optimum growth at a concentration of 3.5 M. The novel strain was able to grow at concentrations of 1 M MgCl2 or less, with an optimum of 0.4 M Mg2+. Growth of the novel strain occurred between pH 6.0 and 8.5, with an optimum of pH 7.0-7.5. The G+C content of the total DNA was 63.7 mol%. The 16S rRNA gene sequence of the novel strain was most closely related to species of the genus Haloferax (97.3-99.3 % sequence similarity). The lipid profile of the novel strain corresponded to that of other species belonging to the genus Haloferax. A comparative analysis of the phenotypic properties and DNA-DNA hybridization between the novel strain and other species of the genus Haloferax strongly supported the conclusion that strain TL6T represents a novel species within this genus, for which the name Haloferax prahovense sp. nov., is proposed. The type strain is TL6T (=JCM 13924T=DSM 18310T).  (+info)

Haloferax larsenii sp. nov., an extremely halophilic archaeon from a solar saltern. (12/22)

Three strains of Gram-negative, aerobic, neutrophilic, extremely halophilic archaea, designated ZJ206(T), ZJ203 and ZJ204, were isolated from a solar saltern in Zhe-Jiang Province, China. Phenotypically and on the basis of 16S rRNA gene sequences, the strains were very similar. Comparative 16S rRNA gene analysis revealed 96.4-97.4 % sequence similarity to members of the genus Haloferax. The major polar lipids were C(20)C(20) derivatives of phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, diglycosyl glycerol diether and sulfated diglycosyl diether. The DNA G+C content of strain ZJ206(T) was 62.2 mol%. The results of DNA-DNA hybridizations and physiological and biochemical tests allowed genotypic and phenotypic differentiation of the isolates from closely related species. Therefore the isolates should be classified as members of a novel species, for which the name Haloferax larsenii sp. nov. is proposed. The type strain is ZJ206(T) (=CGMCC 1.5347(T)=JCM 13917(T)).  (+info)

Genome-wide analysis of growth phase-dependent translational and transcriptional regulation in halophilic archaea. (13/22)

BACKGROUND: Differential expression of genes can be regulated on many different levels. Most global studies of gene regulation concentrate on transcript level regulation, and very few global analyses of differential translational efficiencies exist. The studies have revealed that in Saccharomyces cerevisiae, Arabidopsis thaliana, and human cell lines translational regulation plays a significant role. Additional species have not been investigated yet. Particularly, until now no global study of translational control with any prokaryotic species was available. RESULTS: A global analysis of translational control was performed with two haloarchaeal model species, Halobacterium salinarum and Haloferax volcanii. To identify differentially regulated genes, exponentially growing and stationary phase cells were compared. More than 20% of H. salinarum transcripts are translated with non-average efficiencies. By far the largest group is comprised of genes that are translated with above-average efficiency specifically in exponential phase, including genes for many ribosomal proteins, RNA polymerase subunits, enzymes, and chemotaxis proteins. Translation of 1% of all genes is specifically repressed in either of the two growth phases. For comparison, DNA microarrays were also used to identify differential transcriptional regulation in H. salinarum, and 17% of all genes were found to have non-average transcript levels in exponential versus stationary phase. In H. volcanii, 12% of all genes are translated with non-average efficiencies. The overlap with H. salinarum is negligible. In contrast to H. salinarum, 4.6% of genes have non-average translational efficiency in both growth phases, and thus they might be regulated by other stimuli than growth phase. CONCLUSION: For the first time in any prokaryotic species it was shown that a significant fraction of genes is under differential translational control. Groups of genes with different regulatory patterns were discovered. However, neither the fractions nor the identity of regulated genes are conserved between H. salinarum and H. volcanii, indicating that prokaryotes as well as eukaryotes use differential translational control for the regulation of gene expression, but that the identity of regulated genes is not conserved. For 70 H. salinarum genes potentiation of regulation was observed, but for the majority of regulated genes either transcriptional or translational regulation is employed.  (+info)

Haloferax elongans sp. nov. and Haloferax mucosum sp. nov., isolated from microbial mats from Hamelin Pool, Shark Bay, Australia. (14/22)

 (+info)

Halogranum rubrum gen. nov., sp. nov., a halophilic archaeon isolated from a marine solar saltern. (15/22)

 (+info)

SufS protein from Haloferax volcanii involved in Fe-S cluster assembly in haloarchaea. (16/22)

 (+info)