Anterior cingulate metabolism correlates with stroop errors in paranoid schizophrenia patients. (57/1403)

Using [O-15]-H(2)O PET Carter et al. (1997) reported that medicated patients with schizophrenia performing computerized single trial Stroop (1935) showed a reduction in the anterior cingulate activation response to the more attention demanding, incongruent Stroop condition. In that study, both patients and controls also showed a direct correlation between anterior cingulate activation and errors committed during incongruent trials of the task. In this study we follow up with an examination of paranoid schizophrenia outpatients and controls with very high resolution positron emission tomography (PET) and the longer half-life tracer [F-18]-fluorinated deoxyglucose (FDG) (Valk et al. 1990). All subjects (10 controls and 9 paranoid schizophrenia patients) were studied with FDG-PET while performing a computerized trial-by-trial version of the Stroop task during the uptake phase of the tracer (Carter et al. 1992). RESULTS: As in previous studies using the single trial Stroop, patients were able to perform the task but made more color-naming errors during incongruent trials than controls. The patients in the present study showed a trend towards increased metabolic activity in the right anterior cingulate cortex. In the patient group, but not in controls, the anterior cingulate glucose metabolic rate correlated positively with the total incongruent trial errors. CONCLUSION: These results are consistent with the hypothesis that the anterior cingulate plays a performance-monitoring role during human cognition. This study does not rule out a reduction in error sensitivity in this region of the brain in schizophrenia, as other studies have suggested, however the data show that in unmedicated patients with the paranoid subtype this function is preserved to some extent.  (+info)

Maturation of extinction behavior in infant rats: large-scale regional interactions with medial prefrontal cortex, orbitofrontal cortex, and anterior cingulate cortex. (58/1403)

The ability to express a behavior during the postnatal period may be related to developmental changes in the recruitment of particular neural systems. Here, we show that developmental changes in the functional interactions involving three cortical regions (the medial prefrontal cortex, orbitofrontal cortex, and anterior cingulate cortex) are associated with maturation of extinction behavior in infant rats. Postnatal day 17 (P17) and P12 pups were trained in a straight-alley runway on an alternating schedule of reward and nonreward [patterned single alternation (PSA)] or on a pseudorandom schedule of partial reinforcement (PRF); the pups were then injected with fluorodeoxyglucose (FDG) and shifted to continuous nonreward (extinction). Handled control groups exposed to the same training environment but not trained on a particular schedule were included. Among P17 pups, extinction proceeded faster in PSA pups relative to PRF pups. No differences were found between P12 groups. FDG uptake, an index of acute changes in functional activity, was quantified in the three cortical regions and 27 other brain regions of interest. A multivariate covariance analysis, seed partial least squares, revealed that functional relationships involving the three cortical regions and large-scale systems of regions throughout the rostrocaudal extent of the brain changed with training in P17 pups. The cortical regions were primarily uncoupled in the younger group. The data suggest that functional maturation of the frontal cortical regions and their interactions with other brain systems are related to the maturational shift in behavior.  (+info)

Decreases in blood perfusion of the anterior cingulate gyri in Anorexia Nervosa Restricters assessed by SPECT image analysis. (59/1403)

BACKGROUND: It is possible that psychopathological differences exist between the restricting and bulimic forms of anorexia nervosa. We investigated localized differences of brain blood flow of anorexia nervosa patients using SPECT image analysis with statistic parametric mapping (SPM) in an attempt to link brain blood flow patterns to neurophysiologic characteristics. METHODS: The subjects enrolled in this study included the following three groups: pure restrictor anorexics (AN-R), anorexic bulimics (AN-BP), and healthy volunteers (HV). All images were transformed into the standard anatomical space of the stereotactic brain atlas, then smoothed. After statistical analysis of each brain image, the relationships among images were evaluated. RESULTS: SPM analysis of the SPECT images revealed that the blood flow of frontal area mainly containing bilateral anterior cingulate gyri (ACC) was significantly decreased in the AN-R group compared to the AN-BP and HV groups. CONCLUSIONS: These findings suggest that some localized functions of the ACCare possibly relevant to the psychopathological aspects of AN-R.  (+info)

Energy hypometabolism in posterior cingulate cortex of Alzheimer's patients: superficial laminar cytochrome oxidase associated with disease duration. (60/1403)

Among brain regions affected in Alzheimer's disease (AD), the posterior cingulate shows the earliest and largest decrement in energy metabolism. Positron emission tomography (PET) studies have shown that these decrements appear before the onset of memory deficits or other symptoms in persons at genetic risk for AD. This study compares in vivo imaging results and in situ postmortem analyses by examining the posterior cingulate (area 23) in 15 AD patients and 13 age-matched nondemented controls using quantitative cytochrome oxidase histochemistry as an intracellular measure of oxidative energy metabolic capacity. Each of the six layers of the posterior cingulate demonstrated a decline in cytochrome oxidase activity in AD relative to controls, whereas adjacent motor cortex showed no significant differences. This decrement did not appear to be mainly secondary to nonspecific decrement in mitochondrial enzymes, oxidative stress, cell loss, or histopathology. The cytochrome oxidase decrement was most severe in the superficial layer I (-39%), which demonstrated a correlation to disease duration. Covariance analyses suggest that superficial laminas undergo a functional uncoupling from the deeper layers of posterior cingulate cortex in AD, whereas no such effects are found in motor cortex or controls. These findings expand on previous results from PET studies by illuminating the layer-specific cytochrome oxidase contributions to energy hypometabolism. The findings suggest a decrement of cytochrome oxidase in posterior cingulate cortex, with progressive reduction within the superficial laminas linked to disease duration. Such decrement could contribute to some of the behavioral symptoms displayed by AD patients. This decrement appeared greater in women.  (+info)

Cortical representation of the sensory dimension of pain. (61/1403)

It is well accepted that pain is a multidimensional experience, but little is known of how the brain represents these dimensions. We used positron emission tomography (PET) to indirectly measure pain-evoked cerebral activity before and after hypnotic suggestions were given to modulate the perceived intensity of a painful stimulus. These techniques were similar to those of a previous study in which we gave suggestions to modulate the perceived unpleasantness of a noxious stimulus. Ten volunteers were scanned while tonic warm and noxious heat stimuli were presented to the hand during four experimental conditions: alert control, hypnosis control, hypnotic suggestions for increased-pain intensity and hypnotic suggestions for decreased-pain intensity. As shown in previous brain imaging studies, noxious thermal stimuli presented during the alert and hypnosis-control conditions reliably activated contralateral structures, including primary somatosensory cortex (S1), secondary somatosensory cortex (S2), anterior cingulate cortex, and insular cortex. Hypnotic modulation of the intensity of the pain sensation led to significant changes in pain-evoked activity within S1 in contrast to our previous study in which specific modulation of pain unpleasantness (affect), independent of pain intensity, produced specific changes within the ACC. This double dissociation of cortical modulation indicates a relative specialization of the sensory and the classical limbic cortical areas in the processing of the sensory and affective dimensions of pain.  (+info)

Juvenile emotional experience alters synaptic inputs on pyramidal neurons in the anterior cingulate cortex. (62/1403)

Analogous to the experience-driven development of sensory systems, the functional maturation of limbic circuits is significantly influenced by early socio-emotional experience. In a combined light and electron microscopic study in the anterior cingulate cortex of Octodon degus, the densities of spine and shaft synapses on apical dendrites of layer III pyramidal neurons were compared in 45 day old (1) undisturbed control animals; (2) handled animals; (3) animals which were repeatedly maternally deprived during the first three postnatal weeks; (4) animals which were treated similarly to group 3 and thereafter kept in chronic social isolation. Animals in groups 2-4 showed significantly higher spine densities (up to 121%, 142% and 151% respectively) compared to control group 1. Group 3 displayed significantly longer apical dendrites compared to control group 1. The electron microscopic analysis in cortical layer II revealed significantly higher spine synapses in group 4 (up to 166%) and fewer shaft synapses in groups 3 and 4 (down to 53% and 65% respectively) compared to group 1. These results demonstrate that early traumatic emotional experience alters synaptic input of pyramidal neurons. Such experience-induced modulation of limbic cortex development may determine psychosocial and cognitive capacities during later life.  (+info)

Addiction changes orbitofrontal gyrus function: involvement in response inhibition. (63/1403)

We used the Stroop task as a measure of the ability to inhibit a prepotent response tendency and examined its association with relative glucose metabolism in selected prefrontal brain regions in cocaine addicts, alcoholics, and controls (17 per group). Results revealed that for the substance abusers, higher orbitofrontal gyrus (OFG) activation was associated with lower conflict (higher score; r = 0.32, p < 0.05). For the controls, higher OFG activation was associated with higher conflict (lower score; r = -0.42, p < 0.05). Thus, at baseline, increased relative activation of the OFG is associated with worse performance in controls and better performance in substance abusers on the Stroop task, suggesting reversal of the role of the OFG as a function of addiction.  (+info)

Acute and chronic effects of desipramine and clorgyline on alpha(2)-adrenoceptors regulating noradrenergic transmission in the rat brain: a dual-probe microdialysis study. (64/1403)

1. The effects of desipramine (3 mg kg(-1) i.p.) and clorgyline (1 mg kg(-1) i.p.) on extracellular noradrenaline (NA) in the locus coeruleus (LC) and cingulate cortex were assessed in freely-moving rats by dual-probe microdialysis. Functional activities of alpha(2)-adrenoceptors regulating NA release in the LC and cingulate cortex were determined by systemic (0.3 mg kg(-1) i.p.) or local (0.1 - 100 microM) clonidine administration. 2. Extracellular NA was increased in the LC and cingulate cortex following acute desipramine but not clorgyline treatment. Systemic clonidine decreased NA similarly in desipramine-, clorgyline-, and saline-treated animals, in both brain areas. 3. Long-term (twice daily, 14 days) but not short-term (twice daily, 7 days) desipramine, and long-term clorgyline (once daily, 21 days) treatments increased NA (3 fold) in cingulate cortex but not in the LC. Following long-term treatments, responses of NA to systemic clonidine were attenuated in the LC and cingulate cortex. 4. Clonidine perfusion by reverse dialysis into the cingulate cortex decreased local NA (-55 +/- 9%). The effect was attenuated by long-term desipramine (-31 +/- 9%) and clorgyline (-10 +/- 2%) treatments. 5. Clonidine perfusion by reverse dialysis into the LC decreased NA in the LC (-89 +/- 2%) and in cingulate cortex (-52 +/- 12%). This effect was attenuated in the LC following long-term desipramine (-72 +/- 4%) and clorgyline (-62 +/- 12%) treatments but it was not modified in the cingulate cortex (-57 +/- 10% and -68 +/- 6%, respectively). 6. These findings demonstrate that chronic desipramine or clorgyline treatments increase NA in noradrenergic terminal areas and desensitize alpha(2)-adrenoceptors modulating local NA release at somatodendritic and terminal levels. However, somatodendritic alpha(2)-adrenoceptors that control LC firing activity are not desensitized.  (+info)