Comparative analysis of carbohydrate-binding properties of two tandem repeat-type Jacalin-related lectins, Castanea crenata agglutinin and Cycas revoluta leaf lectin. (73/132)

Lectins belonging to the jacalin-related lectin family are distributed widely in the plant kingdom. Recently, two mannose-specific lectins having tandem repeat-type structures were discovered in Castanea crenata (angiosperm) and Cycas revoluta (gymnosperm). The occurrence of such similar molecules in taxonomically less related plants suggests their importance in the plant body. To obtain clues to understand their physiological roles, we performed detailed analysis of their sugar-binding specificity. For this purpose, we compared the dissociation constants (K(d)) of Castanea crenata agglutinin (CCA) and Cycas revoluta leaf lectin (CRLL) by using 102 pyridylaminated and 13 p-nitrophenyl oligosaccharides with a recently developed automated system for frontal affinity chromatography. As a result, we found that the basic carbohydrate-binding properties of CCA and CRLL were similar, but differed in their preference for larger N-linked glycans (e.g. Man7-9 glycans). While the affinity of CCA decreased with an increase in the number of extended alpha1-2 mannose residues, CRLL could recognize these Man7-9 glycans with much enhanced affinity. Notably, both lectins also preserved considerable affinity for mono-antennary, complex type N-linked glycans, though the specificity was much broader for CCA. The information obtained here should be helpful for understanding their functions in vivo as well as for development of useful probes for animal cells. This is the first systematic approach to elucidate the fine specificities of plant lectins by means of high-throughput, automated frontal affinity chromatography.  (+info)

The relationship between nuclear DNA content and leaf strategy in seed plants. (74/132)

BACKGROUND AND AIMS: Species' 2C-values (mass of DNA in G(1) phase 2n nuclei) vary by at least four orders of magnitude among seed plants. The 2C-value has been shown to be co-ordinated with a number of other species traits, and with environmental variables. A prediction that species 2C-values are negatively related to leaf life span (LL) and leaf mass per area (LMA) is tested. These leaf traits are components of a major dimension of ecological variation among plant species. METHODS: Flow cytometry was used to measure the 2C-values for 41 Australian seed plant species, 40 of which were new to the literature. Where possible, LL and LMA data from the global literature were combined with 2C-values from our data set and online C-value databases. KEY RESULTS: Across all species, weak positive relationships were found between 2C-values and both LL and LMA; however, these did not reflect the relationships within either angiosperms or gymnosperms. Across 59 angiosperm species, there were weak negative relationships between 2C-values and both LL (r2 = 0.13, P = 0.005) and LMA (r2 = 0.15, P = 0.002). These relationships were the result of shifts to longer LL and greater LMA in woody compared with herbaceous growth forms, with no relationships present within growth forms. It was not possible to explain a positive relationship between 2C-values and LMA (r2 = 0.30, P = 0.024) across 17 gymnosperm species. The 2C-value was not related to LL or LMA either across species within orders (except for LMA among Pinales), or as radiation divergences in a model phylogeny. CONCLUSIONS: Gymnosperms appear to vary along a spectrum different from angiosperms. Among angiosperms, weak negative cross-species relationships were associated with growth form differences, and traced to a few divergences deep in the model phylogeny. These results suggest that among angiosperms, nuclear DNA content and leaf strategy are unrelated.  (+info)

Proceedings of the SMBE Tri-National Young Investigators' Workshop 2005. Improved consensus network techniques for genome-scale phylogeny. (75/132)

Although recent studies indicate that estimating phylogenies from alignments of concatenated genes greatly reduces the stochastic error, the potential for systematic error still remains, heightening the need for reliable methods to analyze multigene data sets. Consensus methods provide an alternative, more inclusive, approach for analyzing collections of trees arising from multiple genes. We extend a previously described consensus network method for genome-scale phylogeny (Holland, B. R., K. T. Huber, V. Moulton, and P. J. Lockhart. 2004. Using consensus networks to visualize contradictory evidence for species phylogeny. Mol. Biol. Evol. 21:1459-1461) to incorporate additional information. This additional information could come from bootstrap analysis, Bayesian analysis, or various methods to find confidence sets of trees. The new methods can be extended to include edge weights representing genetic distance. We use three data sets to illustrate the approach: 61 genes from 14 angiosperm taxa and one gymnosperm, 106 genes from eight yeast taxa, and 46 members of a gene family from 15 vertebrate taxa.  (+info)

Widespread genome duplications throughout the history of flowering plants. (76/132)

Genomic comparisons provide evidence for ancient genome-wide duplications in a diverse array of animals and plants. We developed a birth-death model to identify evidence for genome duplication in EST data, and applied a mixture model to estimate the age distribution of paralogous pairs identified in EST sets for species representing the basal-most extant flowering plant lineages. We found evidence for episodes of ancient genome-wide duplications in the basal angiosperm lineages including Nuphar advena (yellow water lily: Nymphaeaceae) and the magnoliids Persea americana (avocado: Lauraceae), Liriodendron tulipifera (tulip poplar: Magnoliaceae), and Saruma henryi (Aristolochiaceae). In addition, we detected independent genome duplications in the basal eudicot Eschscholzia californica (California poppy: Papaveraceae) and the basal monocot Acorus americanus (Acoraceae), both of which were distinct from duplications documented for ancestral grass (Poaceae) and core eudicot lineages. Among gymnosperms, we found equivocal evidence for ancient polyploidy in Welwitschia mirabilis (Gnetales) and no evidence for polyploidy in pine, although gymnosperms generally have much larger genomes than the angiosperms investigated. Cross-species sequence divergence estimates suggest that synonymous substitution rates in the basal angiosperms are less than half those previously reported for core eudicots and members of Poaceae. These lower substitution rates permit inference of older duplication events. We hypothesize that evidence of an ancient duplication observed in the Nuphar data may represent a genome duplication in the common ancestor of all or most extant angiosperms, except Amborella.  (+info)

Early angiosperm ecology: evidence from the Albian-Cenomanian of Europe. (77/132)

BACKGROUND AND AIMS: The mid-Cretaceous is a period of sudden turnover from gymnosperm to angiosperm-dominated floras. The aim was to investigate the fossil plant ecology in order to follow the spread of angiosperm taxa. METHODS: Floristic lists and localities from the latest Albian-Cenomanian of Europe are analysed with Wagner's Parsimony Method, a clustering method currently used in phylogeny (cladistics). KEY RESULTS: Wagner's Parsimony Method points out that (a) gymnosperms dominated brackish water-related environments while angiosperms dominated freshwater-related environments (e.g. swamps, floodplains, levees, channels), (b) angiosperms showed the highest diversity in stable, freshwater-related environments, (c) a single angiosperm, 'Diospyros' cretacea, is restricted to brackish water-related environments and (d) the families Lauraceae and Platanaceae were exclusive to disturbed, braided river environments, implying a opportunist strategy for early tree angiosperms. CONCLUSIONS: During the Mid-Cretaceous, European floras were characterized by (a) coastal gymnosperms, (b) highly diversified fluvial angiosperms and (c) the first European brackish water-related angiosperm.  (+info)

Morphological and molecular phylogenetic context of the angiosperms: contrasting the 'top-down' and 'bottom-up' approaches used to infer the likely characteristics of the first flowers. (78/132)

Recent attempts to address the long-debated 'origin' of the angiosperms depend on a phylogenetic framework derived from a matrix of taxa versus characters; most assume that empirical rigour is proportional to the size of the matrix. Sequence-based genotypic approaches increase the number of characters (nucleotides and indels) in the matrix but are confined to the highly restricted spectrum of extant species, whereas morphology-based approaches increase the number of phylogenetically informative taxa (including fossils) at the expense of accessing only a restricted spectrum of phenotypic characters. The two approaches are currently delivering strongly contrasting hypotheses of relationship. Most molecular studies indicate that all extant gymnosperms form a natural group, suggesting surprisingly early divergence of the lineage that led to angiosperms, whereas morphology-only phylogenies indicate that a succession of (mostly extinct) gymnosperms preceded a later angiosperm origin. Causes of this conflict include: (i) the vast phenotypic and genotypic lacuna, largely reflecting pre-Cenozoic extinctions, that separates early-divergent living angiosperms from their closest relatives among the living gymnosperms; (ii) profound uncertainty regarding which (a) extant and (b) extinct angiosperms are most closely related to gymnosperms; and (iii) profound uncertainty regarding which (a) extant and (b) extinct gymnosperms are most closely related to angiosperms, and thus best serve as 'outgroups' dictating the perceived evolutionary polarity of character transitions among the early-divergent angiosperms. These factors still permit a remarkable range of contrasting, yet credible, hypotheses regarding the order of acquisition of the many phenotypic characters, reproductive and vegetative, that distinguish 'classic' angiospermy from 'classic' gymnospermy. The flower remains ill-defined and its mode (or modes) of origin remains hotly disputed; some definitions and hypotheses of evolutionary relationships preclude a role for the flower in delimiting the angiosperms. We advocate maintenance of parallel, reciprocally illuminating programmes of morphological and molecular phylogeny reconstruction, respectively supported by homology testing through additional taxa (especially fossils) and evolutionary-developmental genetic studies that explore genes potentially responsible for major phenotypic transitions.  (+info)

Latitudinal and longitudinal barriers in global biogeography. (79/132)

Due to changes in climate and continental arrangement, plant and animal assemblages faced different dispersal barriers at different moments in Earth's history. It is generally accepted that groups which diversified during times of Gondwanan-Laurasian separation show different distribution patterns from those of more recent origin. Here I present principal component-derived maps for two globally distributed groups, with ca 1000 species each. Gymnosperm assemblages perfectly illustrate the existence of southern and northern components, corresponding to the Gondwanan and Laurasian temperate floras at the time when angiosperms started becoming dominant in the tropics, thus imposing a latitudinal barrier. Bat (chiropteran) assemblages indicate that the major biogeographical barrier in their Cenozoic dispersal was the longitudinal separation between the Old and New World.  (+info)

Global patterns and determinants of vascular plant diversity. (80/132)

Plants, with an estimated 300,000 species, provide crucial primary production and ecosystem structure. To date, our quantitative understanding of diversity gradients of megadiverse clades such as plants has been hampered by the paucity of distribution data. Here, we investigate the global-scale species-richness pattern of vascular plants and examine its environmental and potential historical determinants. Across 1,032 geographic regions worldwide, potential evapotranspiration, the number of wet days per year, and measurements of topographical and habitat heterogeneity emerge as core predictors of species richness. After accounting for environmental effects, the residual differences across the major floristic kingdoms are minor, with the exception of the uniquely diverse Cape Region, highlighting the important role of historical contingencies. Notably, the South African Cape region contains more than twice as many species as expected by the global environmental model, confirming its uniquely evolved flora. A combined multipredictor model explains approximately 70% of the global variation in species richness and fully accounts for the enigmatic latitudinal gradient in species richness. The models illustrate the geographic interplay of different environmental predictors of species richness. Our findings highlight that different hypotheses about the causes of diversity gradients are not mutually exclusive, but likely act synergistically with water-energy dynamics playing a dominant role. The presented geostatistical approach is likely to prove instrumental for identifying richness patterns of the many other taxa without single-species distribution data that still escape our understanding.  (+info)