Process and current status of the epidemiologic studies on cedar pollinosis in Japan. (1/132)

This paper reviews the present situation and future aspects of epidemiologic studies on Japanese cedar pollinosis. Increase of allergic rhinitis patients is observed in both the Patient Survey and the Reports on the Surveys of Social Medical Care Insurance Services, however, these surveys are conducted when cedar pollens do not pollute the air. Many have reported on the prevalence of pollinosis in limited areas but only a few nationwide epidemiologic surveys have been conducted. Most of the studies were conducted at special medical facilities such as university hospitals. There is a high possibility that patients who visit the specific facilities do not exactly represent the actual number of patients and epidemiologic pictures of pollinosis in Japan. The rapid advances in laboratory test methods may change the diagnostic criteria and increase the number of reported patients. Therefore, the prevalence of Japanese cedar pollinosis in Japan has not been determined yet. Determination of the prevalence of cedar pollinosis and description of the epidemiologic pictures constitute the essential steps toward the control of this clinical entity. Thus it is necessary to conduct an epidemiologic survey on Japanese representative samples with a standardized survey form with clear and concise diagnostic criteria.  (+info)

Genes expressed in Pinus radiata male cones include homologs to anther-specific and pathogenesis response genes. (2/132)

We describe the isolation and characterization of 13 cDNA clones that are differentially expressed in male cones of Pinus radiata (D. Don). The transcripts of the 13 genes are expressed at different times between meiosis and microspore mitosis, timing that corresponds to a burst in tapetal activity in the developing anthers. In situ hybridization showed that four of the genes are expressed in the tapetum, while a fifth is expressed in tetrads during a brief developmental window. Six of the seven cDNAs identified in database searches have striking similarity to genes expressed in angiosperm anthers. Seven cDNAs are homologs of defense and pathogen response genes. The cDNAs identified are predicted to encode a chalcone-synthase-like protein, a thaumatin-like protein, a serine hydrolase thought to be a putative regulator of programmed cell death, two lipid-transfer proteins, and two homologs of the anther-specific A9 genes from Brassica napus and Arabidopsis. Overall, our results support the hypothesis that many of the reproductive processes in the angiosperms and gymnosperms were inherited from a common ancestor.  (+info)

Rapid expansion of microsatellite sequences in pines. (3/132)

Microsatellite persistence time and evolutionary change was studied among five species of pines, which included a pair of closely related species (Pinus sylvestris and Pinus resinosa) in the subgenus Pinus, their relative Pinus radiata, and another closely related species pair (Pinus strobus and Pinus lambertiana) in the subgenus Strobus. The effective population sizes of these species are known to have ranged from the very small bottlenecks of P. resinosa to vast populations of P. sylvestris. This background allowed us to place the microsatellite evolution in a well-defined phylogenetic setting. Of 30 loci originating from P. strobus and P. radiata, we were able to consistently amplify 4 in most of the these pine species. These priming sites had been conserved for over 100 Myr. The four microsatellites were sequenced in the five species. Flanking sequences were compared to establish that the loci were orthologous. All microsatellites had persisted in these species, despite very different population sizes. We found a recent microsatellite duplication: a closely related pair of loci in P. strobus, where the other four species had just one locus. On two independent occasions, the repeat area of this same microsatellite (locus RPS 105a/b) had grown from a very low repeat number to 15 or 17 in the last 10-25 Myr. Other parts of the same compound microsatellite had remained virtually unchanged. Locus PR 4.6 is known to be polymorphic in both P. radiata and P. sylvestris, but the polymorphism in the two species is due to different motifs. The very large pine genomes are highly repetitive, and microsatellite loci also occur as gene families.  (+info)

Seed plant phylogeny: Demise of the anthophyte hypothesis? (4/132)

Recent molecular phylogenetic studies indicate, surprisingly, that Gnetales are related to conifers, or even derived from them, and that no other extant seed plants are closely related to angiosperms. Are these results believable? Is this a clash between molecules and morphology?  (+info)

Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers. (5/132)

Phylogenetic relationships among the five groups of extant seed plants are presently quite unclear. For example, morphological studies consistently identify the Gnetales as the extant sister group to angiosperms (the so-called "anthophyte" hypothesis), whereas a number of molecular studies recover gymnosperm monophyly, and few agree with the morphology-based placement of Gnetales. To better resolve these and other unsettled issues, we have generated a new molecular data set of mitochondrial small subunit rRNA sequences, and have analyzed these data together with comparable data sets for the nuclear small subunit rRNA gene and the chloroplast rbcL gene. All nuclear analyses strongly ally Gnetales with a monophyletic conifers, whereas all mitochondrial analyses and those chloroplast analyses that take into account saturation of third-codon position transitions actually place Gnetales within conifers, as the sister group to the Pinaceae. Combined analyses of all three genes strongly support this latter relationship, which to our knowledge has never been suggested before. The combined analyses also strongly support monophyly of extant gymnosperms, with cycads identified as the basal-most group of gymnosperms, Ginkgo as the next basal, and all conifers except for Pinaceae as sister to the Gnetales + Pinaceae clade. According to these findings, the Gnetales may be viewed as extremely divergent conifers, and the many morphological similarities between angiosperms and Gnetales (e.g., double fertilization and flower-like reproductive structures) arose independently.  (+info)

Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales' closest relatives are conifers. (6/132)

Efforts to resolve Darwin's "abominable mystery"-the origin of angiosperms-have led to the conclusion that Gnetales and various fossil groups are sister to angiosperms, forming the "anthophytes." Morphological homologies, however, are difficult to interpret, and molecular data have not provided clear resolution of relationships among major groups of seed plants. We introduce two sequence data sets from slowly evolving mitochondrial genes, cox1 and atpA, which unambiguously reject the anthophyte hypothesis, favoring instead a close relationship between Gnetales and conifers. Parsimony- and likelihood-based analyses of plastid rbcL and nuclear 18S rDNA alone and with cox1 and atpA also strongly support a gnetophyte-conifer grouping. Surprisingly, three of four genes (all but nuclear rDNA) and combined three-genome analyses also suggest or strongly support Gnetales as derived conifers, sister to Pinaceae. Analyses with outgroups screened to avoid long branches consistently identify all gymnosperms as a monophyletic sister group to angiosperms. Combined three- and four-gene rooted analyses resolve the branching order for the remaining major groups-cycads separate from other gymnosperms first, followed by Ginkgo and then (Gnetales + Pinaceae) sister to a monophyletic group with all other conifer families. The molecular phylogeny strongly conflicts with current interpretations of seed plant morphology, and implies that many similarities between gnetophytes and angiosperms, such as "flower-like" reproductive structures and double fertilization, were independently derived, whereas other characters could emerge as synapomorphies for an expanded conifer group including Gnetales. An initial angiosperm-gymnosperm split implies a long stem lineage preceding the explosive Mesozoic radiation of flowering plants and suggests that angiosperm origins and homologies should be sought among extinct seed plant groups.  (+info)

Detection of intracellular bacteria in the buds of Scotch pine (Pinus sylvestris L.) by in situ hybridization. (7/132)

Bacterial isolates were obtained from pine (Pinus sylvestris L.) tissue cultures and identified as Methylobacterium extorquens and Pseudomonas synxantha. The existence of bacteria in pine buds was investigated by 16S rRNA in situ hybridization. Bacteria inhabited the buds of every tree examined, primarily colonizing the cells of scale primordia and resin ducts.  (+info)

Hot spots, indicator taxa, complementarity and optimal networks of taiga. (8/132)

If hot spots for different taxa coincide, priority-setting surveys in a region could be carried out more cheaply by focusing on indicator taxa. Several previous studies show that hot spots of different taxa rarely coincide. However, in tropical areas indicator taxa may be used in selecting complementary networks to represent biodiversity as a whole. We studied beetles (Coleoptera), Heteroptera, polypores or bracket fungi (Polyporaceae) and vascular plants of old growth boreal taiga forests. Optimal networks for Heteroptera maximized the high overall species richness of beetles and vascular plants, but these networks were least favourable options for polypores. Polypores are an important group indicating the conservation value of old growth taiga forests. Random selection provided a better option. Thus, certain groups may function as good indicators for maximizing the overall species richness of some taxonomic groups, but all taxa should be examined separately.  (+info)