Loading...
(1/2769) PKCdelta acts as a growth and tumor suppressor in rat colonic epithelial cells.

We have analysed the expression of three calcium-independent isoforms of protein kinase C (PKC), PKCdelta, PKCepsilon and PKCzeta, in an in vitro model of colon carcinogenesis consisting of the nontumorigenic rat colonic epithelial cell line D/WT, and a derivative src-transformed line D/src. While PKCzeta and PKCepsilon showed similar protein levels, PKCdelta was markedly decreased in D/src cells when compared to the D/WT line. To assess whether down-regulation of PKCdelta was causally involved in the neoplastic phenotype in D/src cells, we prepared a kinase-defective mutant of PKCdelta. Stable transfection of this sequence caused morphological and growth changes characteristic of partial transformation in D/WT cells. Moreover, to test whether PKCdelta was involved in growth control and transformation in this model, we overexpressed PKCdelta in D/src cells. Transfected cells underwent marked growth and morphological modifications toward the D/WT phenotype. In a late stage in culture, transfected cells ceased to proliferate, rounded up and degenerated into multinucleated, giant-like cells. We conclude that PKCdelta can reverse the transformed phenotype and act as a suppressor of cell growth in D/src cells. Moreover, our data show that downregulation of this isoenzyme of PKC may cooperate in the neoplastic transformation induced by the src oncogene in D/WT cells.  (+info)

(2/2769) Cell growth inhibition by farnesyltransferase inhibitors is mediated by gain of geranylgeranylated RhoB.

Recent results have shown that the ability of farnesyltransferase inhibitors (FTIs) to inhibit malignant cell transformation and Ras prenylation can be separated. We proposed previously that farnesylated Rho proteins are important targets for alternation by FTIs, based on studies of RhoB (the FTI-Rho hypothesis). Cells treated with FTIs exhibit a loss of farnesylated RhoB but a gain of geranylgeranylated RhoB (RhoB-GG), which is associated with loss of growth-promoting activity. In this study, we tested whether the gain of RhoB-GG elicited by FTI treatment was sufficient to mediate FTI-induced cell growth inhibition. In support of this hypothesis, when expressed in Ras-transformed cells RhoB-GG induced phenotypic reversion, cell growth inhibition, and activation of the cell cycle kinase inhibitor p21WAF1. RhoB-GG did not affect the phenotype or growth of normal cells. These effects were similar to FTI treatment insofar as they were all induced in transformed cells but not in normal cells. RhoB-GG did not promote anoikis of Ras-transformed cells, implying that this response to FTIs involves loss-of-function effects. Our findings corroborate the FTI-Rho hypothesis and demonstrate that gain-of-function effects on Rho are part of the drug mechanism. Gain of RhoB-GG may explain how FTIs inhibit the growth of human tumor cells that lack Ras mutations.  (+info)

(3/2769) Differences in the actions of some blockers of the calcium-activated potassium permeability in mammalian red cells.

1. The actions of some inhibitors of the Ca2+-activated K+ permeability in mammalian red cells have been compared. 2. Block of the permeability was assessed from the reduction in the net loss of K+ that followed the application of the Ca2+ ionophore A23187 (2 microM) to rabbit red cells suspended at a haematocrit of 1% in a low potassium solution ([K]0 0.12-0.17 mM) at 37 degrees C. Net movement of K+ was measured using a K+-sensitive electrode placed in the suspension. 3. The concentrations (microM +/- s.d.) of the compounds tested causing 50% inhibition of K+ loss were: quinine, 37 +/- 3; cetiedil, 26 +/- 1; the cetiedil congeners UCL 1269, UCL 1274 and UCL 1495, approximately 150, 8.2 +/- 0.1, 0.92 +/- 0.03 respectively; clotrimazole, 1.2 +/- 0.1; nitrendipine, 3.6 +/- 0.5 and charybdotoxin, 0.015 +/- 0.002. 4. The characteristics of the block suggested that compounds could be placed in two groups. For one set (quinine, cetiedil, and the UCL congeners), the concentration-inhibition curves were steeper (Hill coefficient, nH, > or = 2.7) than for the other (clotrimazole, nitrendipine, charybdotoxin) for which nH approximately 1. 5. Compounds in the first set alone became less active on raising the concentration of K+ in the external solution to 5.4 mM. 6. The rate of K+ loss induced by A23187 slowed in the presence of high concentrations of cetiedil and its analogues, suggesting a use-dependent component to the inhibitory action. This was not seen with clotrimazole. 7. The blocking action of the cetiedil analogue UCL 1274 could not be overcome by an increase in external Ca2+ and its potency was unaltered when K+ loss was induced by the application of Pb2+ (10 microM) rather than by A23187. 8. These results, taken with the findings of others, suggest that agents that block the red cell Ca2+-activated K+ permeability can be placed in two groups with different mechanisms of action. The differences can be explained by supposing that clotrimazole and charybdotoxin act at the outer face of the channel whereas cetiedil and its congeners may block within it, either at or near the K+ binding site that determines the flow of K+.  (+info)

(4/2769) Leukemia inhibitory factor and ciliary neurotrophic factor cause dendritic retraction in cultured rat sympathetic neurons.

Dendritic retraction occurs in many regions of the developing brain and also after neural injury. However, the molecules that regulate this important regressive process remain largely unknown. Our data indicate that leukemia inhibitory factor (LIF) and ciliary neurotrophic factor (CNTF) cause sympathetic neurons to retract their dendrites in vitro, ultimately leading to an approximately 80% reduction in the size of the arbor. The dendritic retraction induced by LIF exhibited substantial specificity because it was not accompanied by changes in cell number, in the rate of axonal growth, or in the expression of axonal cytoskeletal elements. An antibody to gp130 blocked the effects of LIF and CNTF, and both cytokines induced phosphorylation and nuclear translocation of stat3. Moreover, addition of soluble interleukin-6 (IL-6) receptor to the medium endowed IL-6 with the ability to cause dendritic regression. These data indicate that ligands activating the gp130 pathway have the ability to profoundly alter neuronal cell shape and polarity by selectively causing the retraction of dendrites.  (+info)

(5/2769) Cytoplasmic domains of the leukemia inhibitory factor receptor required for STAT3 activation, differentiation, and growth arrest of myeloid leukemic cells.

Leukemia inhibitory factor (LIF) induces growth arrest and macrophage differentiation of mouse myeloid leukemic cells through the functional LIF receptor (LIFR), which comprises a heterodimeric complex of the LIFR subunit and gp130. To identify the regions within the cytoplasmic domain of LIFR that generate the signals for growth arrest, macrophage differentiation, and STAT3 activation independently of gp130, we constructed chimeric receptors by linking the transmembrane and intracellular regions of mouse LIFR to the extracellular domains of the human granulocyte macrophage colony-stimulating factor receptor (hGM-CSFR) alpha and betac chains. Using the full-length cytoplasmic domain and mutants with progressive C-terminal truncations or point mutations, we show that the two membrane-distal tyrosines with the YXXQ motif of LIFR are critical not only for STAT3 activation, but also for growth arrest and differentiation of WEHI-3B D+ cells. A truncated STAT3, which acts in a dominant negative manner was introduced into WEHI-3B D+ cells expressing GM-CSFRalpha-LIFR and GM-CSFRbetac-LIFR. These cells were not induced to differentiate by hGM-CSF. The results indicate that STAT3 plays essential roles in the signals for growth arrest and differentiation mediated through LIFR.  (+info)

(6/2769) Leukemia inhibitory factor and oncostatin M stimulate collagenase-3 expression in osteoblasts.

Leukemia inhibitory factor (LIF) and oncostatin M (OSM) have multiple effects on skeletal remodeling. Although these cytokines modestly regulate collagen synthesis in osteoblasts, their effects on collagenase expression and collagen degradation are not known. We tested whether LIF and OSM regulate the expression of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in osteoblast-enriched cells isolated from fetal rat calvariae. LIF and OSM increased collagenase-3 (MMP-13) mRNA and immunoreactive protein levels in a time- and dose-dependent manner. LIF and OSM enhanced the rate of transcription of the collagenase gene and stabilized collagenase mRNA in transcriptionally arrested cells. LIF and OSM failed to regulate the expression of gelatinase A (MMP-2) and B (MMP-9). LIF and OSM modestly stimulated the expression of TIMP-1 but did not alter the expression of TIMP-2 and -3. In conclusion, LIF and OSM stimulate collagenase-3 and TIMP-1 expression in osteoblasts, and these effects may be involved in mediating the bone remodeling actions of these cytokines.  (+info)

(7/2769) Antitumor and immunotherapeutic effects of activated invasive T lymphoma cells that display short-term interleukin 1alpha expression.

Expression of cytokines in malignant cells represents a novel approach for therapeutic treatment of tumors. Previously, we demonstrated the immunostimulatory effectiveness of interleukin 1alpha (IL-1alpha) gene transfer in experimental fibrosarcoma tumors. Here, we report the antitumor and immunotherapeutic effects of short-term expression of IL-1alpha by malignant T lymphoma cells. Activation in culture of T lymphoma cells with lipopolysaccharide-stimulated macrophages induces the expression of IL-1alpha. The short-term expression of IL-1alpha persists in the malignant T cells for a few days (approximately 3-6 days) after termination of the in vitro activation procedure and, thus, has the potential to stimulate antitumor immune responses in vivo. As an experimental tumor model, we used the RO1 invasive T lymphoma cell line. Upon i.v. inoculation, these cells invade the vertebral column and compress the spinal cord, resulting in hind leg paralysis and death of the mice. Activated RO1 cells, induced to express IL-1alpha in a short-term manner, manifested reduced tumorigenicity: approximately 75% of the mice injected with activated RO1 cells remained tumor free. IL-1 was shown to be essential for the eradication of activated T lymphoma cells because injection of activated RO1 cells together with IL-1-specific inhibitors, i.e., the IL-1 receptor antagonist or the M 20 IL-1 inhibitor, reversed reduced tumorigenicity patterns and led to progressive tumor growth and death of the mice. Furthermore, activated RO1 cells could serve as a treatment by intervening in the growth of violent RO1 cells after tumor take. Thus, when activated RO1 cells were injected 6 or 9 days after the inoculation of violent cells, mortality was significantly reduced. IL-1alpha, in its unique membrane-associated form, in addition to its cytosolic and secreted forms, may represent a focused adjuvant for potentiating antitumor immune responses at low levels of expression, below those that are toxic to the host. Further assessment of the immunotherapeutic potential of short-term expression of IL-1alpha in activated tumor cells may allow its improved application in the treatment of malignancies.  (+info)

(8/2769) cGMP-dependent and -independent inhibition of a K+ conductance by natriuretic peptides: molecular and functional studies in human proximal tubule cells.

In immortalized human kidney epithelial (IHKE-1) cells derived from proximal tubules, two natriuretic peptide receptors (NPR) were identified. In addition to NPR-A, which is bound by atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and urodilatin (URO), a novel form of NPR-B that might be bound by C-type natriuretic peptide (CNP) was identified using PCR. This novel splice variant of NPR-B (NPR-Bi) was also found in human kidney. Whereas ANP, BNP, and URO increased intracellular cGMP levels in IHKE-1 cells in a concentration-dependent manner, CNP had no effect on cGMP levels. To determine the physiologic responses to these agonists in IHKE-1 cells, the membrane voltage (Vm) was monitored using the slow whole-cell patch-clamp technique. ANP (10 nM), BNP (10 nM), and URO (16 nM) depolarized these cells by 3 to 4 mV (n = 47, 7, and 16, respectively), an effect that could be mimicked by 0.1 mM 8-Br-cGMP (n = 15). The effects of ANP and 8-Br-cGMP were not additive (n = 4). CNP (10 nM) also depolarized these cells, by 3+/-1 mV (n = 28), despite the absence of an increase in cellular cGMP levels, indicating a cGMP-independent mechanism. In the presence of CNP, 8-Br-cGMP further depolarized Vm significantly, by 1.6+/-0.3 mV (n = 5). The depolarizations by ANP were completely abolished in the presence of Ba2+ (1 mM, n = 4) and thus can be related to inhibition of a K+ conductance in the luminal membrane of IHKE-1 cells. The depolarizations attributable to CNP were completely blocked when genistein (10 microM, n = 6), an inhibitor of tyrosine kinases, was present. These findings indicate that natriuretic peptides regulate electrogenic transport processes via cGMP-dependent and -independent pathways that influence the Vm of IHKE-1 cells.  (+info)