Graviresponses in Paramecium biaurelia under different accelerations: studies on the ground and in space. (25/123)

Behavioural responses to different accelerations below 1 g and up to 5 g were investigated in Paramecium biaurelia by using a centrifuge microscope on Earth and in space during a recent space flight. Increased stimulation (hypergravity) enhanced the negative gravitactic and the gravikinetic responses in Paramecium biaurelia within seconds. Cells did not adapt to altered gravitational conditions. Repetitive stimulation did not change the graviresponses. The minimum acceleration found to induce gravitaxis was between 0.16 and 0.3 g.  (+info)

The use of bioelectric currents to study gravity perception in roots. (26/123)

Inhibitor-based studies of gravity perception in plants have yielded ambiguous results because gravitropism consists of many steps in series. Inhibiting any step eliminates gravicurvature; it cannot be shown whether gravity perception and transduction are affected by the inhibitory treatment. The use of the vibrating probe has allowed detection of a response that is measurable independent of stimulus transmission and growth, two post-transduction steps of gravitropism. This application of the vibrating probe requires particular attention to artifacts. Calmodulin action and auxin transport are both believed to be components of gravitropism and specific roles have been proposed for them in graviperception. The perception-dependent current measured with the vibrating probe is eliminated by inhibitors of calmodulin, but not by auxin inhibitors. Thus, the vibrating probe has made it possible to offer more direct evidence for a role of calmodulin in transduction, and to reject one for auxin transport in perception and transduction.  (+info)

Mechanism of vestibular adaptation of fish under microgravity. (27/123)

In a space experiment, the adaptation of goldfish behavior during flight and readaptation after landing were investigated. Six goldfish (1 normal, 1 with otoliths removed on both sides, 4 with otoliths removed on one side) were flown in a fish package (F/P) of Aquatic Animal Experiment Unit (AAEU). The dorsal light responses (DLRs) of fish with otoliths removed were recorded after operation until launch and after landing. The behaviors of the fish were recorded with a video camera on Mission Elapsed Time (MET) Day-00, 02, 05, 08, 12. On MET Day-00, two fish with otoliths removed on one side showed flexion of body toward the operated side. These fish also showed rolling behavior toward the operated side. However, the body flexion disappeared on MET Day-05 or MET Day-08. No rolling behaviors were observed after that time. Five fish showed backward looping behaviors during the mission. Although the frequency of looping episodes decreased after MET Day-08, five fish still showed looping behavior on MET Day-12, that was the last day of video recording on orbit. In microgravity, visual system of fish did not seem to provide sufficient cues to prevent them from looping or rolling. After landing, no looping and rolling behavior was observed. However, the tilt angle of the DLR increased in the fish with otolith removed 5 month before launch but not in normal fish and those with otoliths removed 2 weeks before launch. These results suggest that the behavioral dysfunction and the adaptational process in space are dependent on vestibular inputs.  (+info)

Burst of ethylene upon horizontal placement of tomato seedlings. (28/123)

Seedlings of Lycopersicon esculentum Mill. cv Rutgers emit a pulse of ethylene during the first 2 to 4 minutes following horizontal placement. Because this burst appears too rapid and brief to be mediated by increase in net activity of 1-aminocyclopropane-1-carboxylic acid synthase, it might result form accelerated transformation of vacuolar 1-aminocyclopropane-1-carboxylic acid to ethylene.  (+info)

The role of amyloplasts during gravity perception in gynophores of the peanut plant (Arachis hypogaea). (29/123)

Gravitropic perception and response are essential for the completion of the reproductive life cycle of the peanut plant (Arachis hypogaea L.). The developing seeds are buried in the soil by a specialized organ, the gynophore, allowing the fruit to mature underground. Controversy exists about the site of graviperception in the gynophore: previous workers suggested that the intercalary meristem was the zone where gravity was perceived. Taking the starch statolith hypothesis for graviperception as a framework, we explored the possibility that the starch-grain filled plastids (amyloplasts) in the starch sheath of the gynophore may be acting as gravisensors. We show that these amyloplasts sediment readily with respect to the gravity vector within 30 min of reorientation, and before there is a measurable gravitropic response. Gynophore explants were incubated with gibberellic acid and kinetin, in darkness, to remove starch from the amyloplasts. Destarching the gynophores did not inhibit overall growth of the organ, but reduced the gravitropic response curvature by 82% compared to water-treated controls. In addition, gynophores placed on a rotating clinostat (without hormone treatment) also showed a reduced gravitropic response. In conclusion, the evidence presented in this work strongly suggests that the amyloplasts of the starch sheath are responsible for gravitropic perception in the peanut gynophore. A model for graviperception in the gynophore is presented.  (+info)

Localization of cells containing sedimented amyloplasts in the shoots of normal and lazy rice seedlings. (30/123)

We have examined the localization of the cells containing sedimented amyloplasts (putative statocytes) and its relation to the graviresponding sites in the shoots of normal and lazy rice seedlings. All graviresponsive organs of the shoots of normal rice seedlings, the mesocotyl, the coleoptile and the leaf-sheath base, were found to possess the statocytes. This is the first indication that mesocotyl senses gravity by its own cells in inducing gravitropic bending in rice seedlings. In lazy-Kamenoo, although the shoots lost their gravitropic response with the advance of age, sedimentation of amyloplasts itself might not be attributable to the agravitropic growth of the shoots, because, including those of the leaf-sheath bases that had lost their response to gravity, sedimented amyloplasts appeared to be identical to those of normal Kamenoo and of younger seedlings of lazy-Kamenoo whose gravitropism is still apparent.  (+info)

Root system architecture and gravitropism in the oil palm. (31/123)

The oil palm (Elaeis guineensis Jacq.) has a root system consisting of primary (or order 1) roots, which are either orthogravitropic (R1 VD, with positive gravitropism) or diagravitropic (R1 H). Their statenchyma have very similar characteristics (mainly vacuolated, large cells). However, their statoliths sediment along the longitudinal wall in R1 H and along the distal wall in R1 VD (furthest cell wall from the apical meristem, opposite the proximal wall). Order 2 roots may have vertical upward (R2 VU) or downward growth (R2 VD) or even horizontal growth (R2 H). In all cases, the statoliths are located near the lower wall of the statocyte (distal in R2 VD, proximal in R2 VU and longitudinal in R2 H). Order 3 roots are usually agravitropic. When they grow upwards, R3 VU, their amyloplasts are located near the proximal wall. Likewise, the growth direction of R4 varies, but they have little or no statolith sedimentation. Roots with marked gravitropism (positive or negative) have amyloplasts that can sediment along different walls. But, irrespective of amyloplast position in the statocytes, the direction of root growth may be stable. The relation between the different reactions of roots and different sensitivity to auxin or to a curvature-halting signal is discussed.  (+info)

Gravimorphogenesis of Cucurbitaceae plants: development of peg cells and graviperception mechanism in cucumber seedlings. (32/123)

We examined the effect of microgravity on the peg formation of cucumber seedlings for clarifying the mechanism of gravimorphogenesis in cucurbitaceous plants. The spaceflight experiments verified that gravity controls the formation of peg, hypocotyl hook and growth orientation of cucumber seedlings. Space-grown cucumber developed a peg on each side of the transition zone of the hypocotyl and root, indicating that on the ground peg formation is regulated negatively by gravity (Takahashi et al. 2000). It was found that the auxin-regulated gene, CS-IAA1, was strongly expressed in the transition zone where peg develops (Fujii et al. 2000). In the seedlings grown horizontally on the ground, CS-IAA1 transcripts were much abundant on the lower side of the transition zone, but no such differential expression of CS-IAA1 was observed in the space-grown cucumber (Kamada et al. 2000). These results imply that gravity plays a role in peg formation through auxin redistribution. By the negative control, peg formation on the upper side of the transition zone in the horizontally growing seedlings might be suppressed due to a reduction in auxin concentration. The threshold theory of auxin concentration accounted for the new concept, negative control of morphogenesis by gravity (Kamada et al. 2000). Anatomical studies have shown that there exists the target cells destined to be a peg and distinguishable at the early stage of the growth. Ultra-structural analysis suggested that endoplasmic reticulum develops well in the cells of the future peg. Furthermore, it was found that reorganization of cortical microtubules is required for the change in cell growth polarity in the process of peg formation. The spaceflight experiment with cucumber seedlings also suggested that in microgravity positive hydrotropic response of roots occurred without interference by gravitropic response (Takahashi et al. 1999b). Thus, this spaceflight experiment together with the ground-based studies has shown that cucumber seedling is an ideal for the study of gravimorphogenesis, hydrotropism and their interaction. Although peg formation is seen specifically in cucurbitaceous seedlings, it involves graviperception, auxin transport and redistribution and cytoskeletal modification for controlling cell growth polarity. This system could be a useful model for studying important current issues in plant biology.  (+info)