Density-dependent aposematism in the desert locust. (33/855)

The ecological processes underlying locust swarm formation are poorly understood. Locust species exhibit phenotypic plasticity in numerous morphological, physiological and behavioural traits as their population density increases. These density-dependent changes are commonly assumed to be adaptations for migration under heterogeneous environmental conditions. Here we demonstrate that density-dependent nymphal colour change in the desert locust Schistocerca gregaria (Orthoptera: Acrididae) results in warning coloration (aposematism) when the population density increases and locusts consume native, toxic host plants. Fringe-toed lizards (Acanthodactylus dumerili (Lacertidae)) developed aversions to high-density-reared (gregarious-phase) locusts fed Hyoscyamus muticus (Solanaceae). Lizards associated both olfactory and visual cues with locust unpalatability, but only gregarious-phase coloration was an effective visual warning signal. The lizards did not associate low rearing density coloration (solitarious phase) with locust toxicity. Predator learning of density-dependent warning coloration results in a marked decrease in predation on locusts and may directly contribute to outbreaks of this notorious pest.  (+info)

Directional hearing of a grasshopper in the field. (34/855)

An electrophysiological method for making long-term recordings from the tympanal nerve was developed in Chorthippus biguttulus (Gomphocerinae) to gain insight into the ecophysiological constraints of sound localization in acridid grasshoppers. Using this 'biological microphone', the directional dependence of auditory nerve activity was monitored both in the laboratory and in various natural habitats of this species. On gravel and in sparse vegetation, the overall patterns of directionality were found to be very similar to those in the free sound field in the laboratory, regardless of whether the animal was positioned horizontally or vertically. However, the differences between the ipsi- and contralateral sides were smaller in these habitats than in the laboratory. In dense vegetation, the directional patterns were greatly affected by the environment. Moreover, a minimum in nerve activity was not always reached on the contralateral side, as is typical for the free sound field situation. On the basis of these data, predictions can be made about the ability of the animals to determine the correct side of a sound source. In the free sound field of the laboratory, correct lateralizations are expected at all angles of sound incidence between 20 and 160 degrees, a prediction corresponding to the results of behavioural studies. In sparse vegetation, a similar accuracy can be anticipated, whereas on gravel and in dense vegetation directional hearing is expected to be severely degraded, especially if the animal is oriented horizontally. The predictions from our present electrophysiological investigations must now be confirmed by behavioural studies in the field.  (+info)

Interaction of locust apolipophorin III with lipoproteins and phospholipid vesicles: effect of glycosylation. (35/855)

Apolipophorin III (apoLp-III) from Locusta migratoria is an exchangeable apolipoprotein that binds reversibly to lipoprotein surfaces. The native protein is glycosylated at Asn-18 and Asn-85. Variable attachment of five distinct oligosaccharide moieties at the two glycosylation sites results in molecular weight heterogeneity, as seen by mass spectrometry. The main mass peak of 20,488 Da decreases to 17,583 Da after removal of carbohydrate, indicating that apoLp-III carbohydrate mass is approximately 14% by weight. Deglycosylated apoLp-III induced clearance of dimyristoylphosphatidylcholine and dimyristoylphosphatidylglycerol vesicles at a faster rate than glycosylated apoLp-III. However, in lipoprotein binding assays, in which apoLp-III interacts with surface-localized diacylglycerol, only minor differences in binding were observed. The fluorescence properties of 1-anilinonaphthalene-8-sulfonate were unaffected by the glycosylation state of apoLp-III, indicating that no changes in the relative amount of exposed hydrophobic surface occurred as a result of carbohydrate removal. We propose that glycosyl moieties affect the ability of apoLp-III to transform phospholipid bilayer vesicles into disc-like complexes by steric hindrance. This is due to the requirement that apoLp-III penetrate the bilayer substrate prior to conformational opening of the helix bundle. On the other hand, the glycosyl moieties do not affect lipoprotein binding interactions as it does not involve deep protein penetration into the lipid milieu. Rather, lipoprotein binding is based on oriented protein contact with the lipid surface followed by opening of the helix bundle, which allows formation of a stable interaction with surface exposed hydrophobic sites.  (+info)

Learning improves growth rate in grasshoppers. (36/855)

To quantify the adaptive significance of insect learning, we documented the behavior and growth rate of grasshoppers (Schistocerca americana) in an environment containing two artificial food types, one providing a balanced diet of protein and carbohydrate, which maximizes growth, and the other being carbohydrate-deficient, which is unsuitable for growth. Grasshoppers in the Learning treatment experienced a predictable environment, where the spatial location, taste, and color of each food source remained constant throughout the experiment. In contrast, grasshoppers of the Random treatment developed in a temporally varying environment, where the spatial location, taste, and color of the balanced and deficient food types randomly alternated twice each day. Our results show that the grasshoppers that could employ associative learning for diet choice experienced higher growth rates than individuals of the Random treatment, demonstrating the adaptive significance of learning in a small short-lived insect.  (+info)

Frequent assimilation of mitochondrial DNA by grasshopper nuclear genomes. (37/855)

Multiple copies of mitochondrial-like DNA were found in the brown mountain grasshopper, Podisma pedestris (Orthoptera: Acrididae), paralogous to COI and ND5 regions. The same was discovered using the ND5 regions of nine other grasshopper species from four separate subfamilies (Podisminae, Calliptaminae, Cyrtacanthacridinae, and Gomphocerinae). The extra ND5-like sequences were shown to be nuclear in the desert locust, Schistocerca gregaria (Cyrtacanthacridinae), and probably so in P. pedestris and an Italopodisma sp. (Podisminae). Eighty-seven different ND5-like nuclear mitochondrial pseudogenes (Numts) were sequenced from 12 grasshopper individuals. Different nuclear mitochondrial pseudogenes, if descended from the same mitochondrial immigrant, will have diverged from each other under no selective constraints because of their loss of functionality. Evidence of selective constraints in the differences between any two Numt sequences (e.g., if most differences are at third positions of codons) implies that they have separate mitochondrial origins. Through pairwise comparisons of pseudogene sequences, it was established that there have been at least 12 separate mtDNA integrations into P. pedestris nuclear genomes. This is the highest reported rate of horizontal transfer between organellar and nuclear genomes within a single animal species. The occurrence of numerous mitochondrial pseudogenes in nuclear genomes derived from separate integration events appears to be a common phenomenon among grasshoppers. More than one type of mechanism appears to have been involved in generating the observed grasshopper Numts.  (+info)

Leg development in flies versus grasshoppers: differences in dpp expression do not lead to differences in the expression of downstream components of the leg patterning pathway. (38/855)

All insect legs are structurally similar, characterized by five primary segments. However, this final form is achieved in different ways. Primitively, the legs developed as direct outgrowths of the body wall, a condition retained in most insect species. In some groups, including the lineage containing the genus Drosophila, legs develop indirectly from imaginal discs. Our understanding of the molecular mechanisms regulating leg development is based largely on analysis of this derived mode of leg development in the species D. melanogaster. The current model for Drosophila leg development is divided into two phases, embryonic allocation and imaginal disc patterning, which are distinguished by interactions among the genes wingless (wg), decapentaplegic (dpp) and distalless (dll). In the allocation phase, dll is activated by wg but repressed by dpp. During imaginal disc patterning, dpp and wg cooperatively activate dll and also indirectly inhibit the nuclear localization of Extradenticle (Exd), which divide the leg into distal and proximal domains. In the grasshopper Schistocerca americana, the early expression pattern of dpp differs radically from the Drosophila pattern, suggesting that the genetic interactions that allocate the leg differ between the two species. Despite early differences in dpp expression, wg, Dll and Exd are expressed in similar patterns throughout the development of grasshopper and fly legs, suggesting that some aspects of proximodistal (P/D) patterning are evolutionarily conserved. We also detect differences in later dpp expression, which suggests that dpp likely plays a role in limb segmentation in Schistocerca, but not in Drosophila. The divergence in dpp expression is surprising given that all other comparative data on gene expression during insect leg development indicate that the molecular pathways regulating this process are conserved. However, it is consistent with the early divergence in developmental mode between fly and grasshopper limbs.  (+info)

Dynamics and hydration of the alpha-helices of apolipophorin III. (39/855)

Apolipophorin III (apoLp-III) is an exchangeable apolipoprotein whose structure is represented as a bundle of five amphipathic alpha-helices. In order to study the properties of the helical domains of apolipophorin III, we designed and obtained five single-tryptophan mutants of Locusta migratoria apoLp-III. The proteins were studied by UV absorption spectroscopy, time-resolved and steady-state fluorescence spectroscopy, and circular dichroism. Fluorescence anisotropy, near-UV CD and solute fluorescence quenching studies indicate that the Trp residues in helices 1 (N-terminal) and 5 (C-terminal) have the highest conformational flexibility. These two residues also showed the highest degree of hydration. Trp residues in helices 3 and 4 display the lowest mobility, as assessed by fluorescence anisotropy and near UV CD. The Trp residue in helix 2 is protected from the solvent but shows high mobility. As inferred from the properties of the Trp residues, helices 1 and 5 appear to have the highest conformational flexibility. Helix 2 has an intermediate mobility, whereas helices 3 and 4 appear to constitute a highly ordered domain. From the configuration of the helices in the tertiary structure of the protein, we estimated the relative strength of the five interhelical interactions of apoLp-III. These interactions can be ordered according to their apparent stabilizing strengths as: helix 3-helix 4 > helix 2-helix 3 > helix 4-helix 1 approximately helix 2-helix 5 > helix 1-helix 5. A new model for the conformational change that is expected to occur upon binding of the apolipoprotein to lipid is proposed. This model is significantly different from the currently accepted model (Breiter, D. R., Kanost, M. R., Benning, M. M., Wesemberg, G., Law, J. H., Wells, M. A., Rayment, I., and Holden, M. (1991) Biochemistry 30, 603-608). The model presented here predicts that the relaxation of the tertiary structure and the concomitant exposure of the hydrophobic core take place through the disruption of the weak interhelical contacts between helices 1 and 5. To some extent, the weakness of the helix 1-helix 5 interaction would be due to the parallel arrangement of these helices.  (+info)

Ectopic expression of the neuropeptide pigment-dispersing factor alters behavioral rhythms in Drosophila melanogaster. (40/855)

To study the function of the neuropeptide pigment-dispersing factor (PDF) in the circadian system of Drosophila, we misexpressed the pdf gene from the grasshopper Romalea in the CNS of Drosophila and investigated the effect of this on behavioral rhythmicity. pdf was either ectopically expressed in different numbers of neurons in the brain or the thoracical nervous system or overexpressed in the pacemaker neurons alone. We found severe alterations in the activity and eclosion rhythm of several but not all lines with ectopic pdf expression. Only ectopic pdf expression in neurons that projected into the dorsal central brain severely influenced activity rhythms. Therefore, we conclude that PDF acts as a neuromodulator in the dorsal central brain that is involved in the rhythmic control of behavior. Overexpression of pdf in the pacemaker neurons alone or in the other neurons that express the clock genes period (per) and timeless (tim) did not disturb the activity rhythm. Such flies still showed a rhythm in PDF accumulation in the central brain terminals. This rhythm was absent in the terminals of neurons that expressed PDF ectopically. Probably, PDF is rhythmically processed, transported, or secreted in neurons expressing per and tim, and additional PDF expression in these cells does not influence this rhythmic process. In neurons lacking per and tim, PDF appears to be continuously processed, leading to a constant PDF secretion at their nerve terminals. This may lead to conflicting signals in the rhythmic output pathway and result in a severely altered rhythmic behavior.  (+info)