AMD3465, a novel CXCR4 receptor antagonist, abrogates schistosomal antigen-elicited (type-2) pulmonary granuloma formation. (57/104)

CXCR4 is a major receptor for CXCL12 and is known to participate in multiple physiological systems. The present study tested a second generation CXCR4 antagonist, AMD3465, for effects on highly defined models of Th1- and Th2-cell-mediated hypersensitivity-type pulmonary granuloma formation. Type-1 and type-2 granulomas were induced, respectively, by intravenous challenge of sensitized CBA/J mice with Mycobacteria bovis purified protein derivative- or Schistosoma mansoni egg antigen-coated beads. Before challenge, mice were implanted with osmotic pumps releasing AMD3465 at 5 microg/hour (6 mg/kg/day). Compared to vehicle, AMD3465 had minimal effect on type-1 inflammation or cytokine responses in draining lymph nodes, but the type-2 inflammation was significantly abrogated with reductions in lesion size and eosinophil content as well as abrogated interleukin (IL)-5, IL-10, and IL-13 cytokine production in draining lymph nodes. The biased effect of AMD3465 correlated with greater CXCR4 ligand expression in the type-2 model. Treatment during a primary response impaired lymph node IL-2 production after both Mycobacteria bovis purified protein derivative and Schistosoma mansoni egg antigen challenge indicating an unbiased effect during immune induction. In summary, CXCR4 blockade inhibited eosinophil recruitment during type-2 granuloma formation and interfered with primary and secondary T-cell activation events in lymphoid tissue, suggesting potential therapeutic application for chronic hypersensitivity diseases.  (+info)

Retrograde radiographic development in pulmonary sarcoidosis. (58/104)

A 48-year-old man with dyspnea, cough, and fever was found to have a diffuse ground-glass pulmonary lesion without lymphadenopathy on chest X-ray. The lesion shifted to the peripheral lung zones 2 months later when transbronchial biopsy demonstrated noncaseating granulomas with Langhans type giant cells. After 6 more months, prominent bilateral hilar lymphadenopathy and highly elevated serum angiotensin-converting enzyme confirmed the diagnosis of pulmonary sarcoidosis. Such a course is quite rare in that it goes the opposite way of the conventional staging system.  (+info)

The receptor for advanced glycation end products and its ligands: a new inflammatory pathway in lung disease? (59/104)

The binding of the receptor for advanced glycation end products (RAGE) with its ligands begins a sustained period of cellular activation and inflammatory signal amplification in different tissues and diseases. This binding could represent an as yet uninvestigated pathway of inflammatory reaction in the lung, where the presence of the receptor has been largely documented and advanced glycation end products (AGEs) are produced by nonenzymatic glycation and oxidation of proteins and lipids, driven by smoke and pollutants exposure or inflammatory stress. We immunohistochemically assessed the expression of RAGE and of its major proinflammatory ligands, N-epsilon-carboxy-methyl-lysine, S100B and S-100A12 in normal lung and in non-neoplastic lung disorders including smoke-related airway disease, granulomatous inflammation, postobstructive damage and usual interstitial pneumonia. In normal lung low expression of the receptor was observed in bronchiolar epithelia, type II pneumocytes, macrophages and some endothelia. S100A12 and S100B were expressed, respectively, in granulocytes and in dendritic cells. Carboxy-methyl-lysine was present in bronchiolar epithelia and macrophages. In all pathological conditions associated with inflammation and lung damage overexpression of both the receptor and of AGEs was observed in bronchiolar epithelia, type II alveolar pneumocytes, alveolar macrophages and endothelia. RAGE overexpression was more evident in epithelia associated with inflammatory cell aggregates. Fibroblasts in usual interstitial pneumonia expressed both the receptor and AGEs. The number of S100A12 and S100B immunoreactive inflammatory cells was variable. S100A12 was also expressed in mononuclear inflammatory cells and in activated epithelia. The activation of the inflammatory pathway controlled by the RAGE is not specific of a single lung disease, however, it may be relevant as a nonspecific pathway of sustained inflammation in lung tissue, and on this basis therapeutic approaches based on receptor blockage can be envisaged.  (+info)

CCR4 participation in Th type 1 (mycobacterial) and Th type 2 (schistosomal) anamnestic pulmonary granulomatous responses. (60/104)

CCR4 is purported to be a Th type 2 (Th2) cell-biased receptor but its functional role is unclear. Recent studies suggest that chemokine receptor expression and function are more complex in vivo and raise doubts regarding restricted CCR4 expression by Th2 cells. To address these issues, we analyzed the role of CCR4 in highly polarized models of Th type 1 (Th1) and Th2 cell-mediated pulmonary granulomas, respectively, elicited by i.v. challenge of primed mice with either mycobacterial purified protein derivative or schistosomal egg Ag-coated beads. CCR4 agonists were expressed during both responses, correlating with a shift of CCR4+ CD4+ T cells from blood to lungs. CCL22 dominated in draining nodes during the Th1 response. Analysis of CD4+ effector T cells revealed CCR4 expression and CCR4-mediated chemotaxis by both IFN-gamma and IL-4 producers. Studies of CCR4 knockout (CCR4(-/-)) mice showed partial impairment of the local type-2 cytokine response and surprisingly strong impairment of the Th1 response with abrogated IFN-gamma production during secondary but not primary challenge. Adoptive transfer indicated CCR4(-/-)CD4+ Th1 cell function was defective but this could not be reconstituted with wild-type (CCR4(+/+)) CD4+ T cells indicating involvement of another CCR4+ population. Coculture of CCR4(+/+)CD4+ T cells and CCR4(-/-) dendritic cells revealed intact IL-2 but impaired IFN-gamma production, pointing to a role for CCR4+ dendritic cells in effector cell expression. Therefore, CCR4 is not Th2-restricted and was required for sustenance and expression of the Th1 effector/memory response to mycobacterial Ags.  (+info)

B cells moderate inflammatory progression and enhance bacterial containment upon pulmonary challenge with Mycobacterium tuberculosis. (61/104)

Though much is known about the function of T lymphocytes in the adaptive immune response against Mycobacterium tuberculosis, comparably little is understood regarding the corresponding role of B lymphocytes. Indicating B cells as components of lymphoid neogenesis during pulmonary tuberculosis, we have identified ectopic germinal centers (GCs) in the lungs of infected mice. B cells in these pulmonary lymphoid aggregates express peanut agglutinin and GL7, two markers of GC B cells, as well as CXCR5, and migrate in response to the lymphoid-associated chemokine CXCL13 ex vivo. CXCL13 is negatively regulated by the presence of B cells, as its production is elevated in lungs of B cell-deficient (B cell(-/-)) mice. Upon aerosol with 100 CFU of M. tuberculosis Erdman, B cell(-/-) mice have exacerbated immunopathology corresponding with elevated pulmonary recruitment of neutrophils. Infected B cell(-/-) mice show increased production of IL-10 in the lungs, whereas IFN-gamma, TNF-alpha, and IL-10R remain unchanged from wild type. B cell(-/-) mice have enhanced susceptibility to infection when aerogenically challenged with 300 CFU of M. tuberculosis corresponding with elevated bacterial burden in the lungs but not in the spleen or liver. Adoptive transfer of B cells complements the phenotypes of B cell(-/-) mice, confirming a role for B cells in both modulation of the host response and optimal containment of the tubercle bacillus. As components of ectopic GCs, moderators of inflammatory progression, and enhancers of local immunity against bacterial challenge, B cells may have a greater role in the host defense against M. tuberculosis than previously thought.  (+info)

Expression and role of CCR6/CCL20 chemokine axis in pulmonary sarcoidosis. (62/104)

We have shown previously that the chemokine receptors CXCR3 and CXCR6 are coexpressed by Th1 cells infiltrating the lung and the granuloma of patients with sarcoidosis. In this study, we evaluated the role of CCL20/CCR6 interaction in the pathogenesis of acute and chronic pulmonary sarcoidosis. By flow cytometry and molecular analyses, we have demonstrated that Th1 cells isolated from the bronchoalveolar lavage (BAL) of patients with sarcoidosis and T cell alveolitis are equipped with CCR6. Furthermore, CCR6(+) T cells coexpressed the chemokine receptors CXCR3 and CXCR6. Immunohistochemical analysis of lung specimens has shown that CCR6(+) T cells infiltrate lung interstitium and surround the central core of the granuloma. It is interesting that CCR6 was never detected on the alveolar macrophage (AM) surface, and it is observed in the cytoplasm of AMs from patients with sarcoidosis and alveolitis. The CCR6 ligand CCL20 was expressed by macrophages, multinucleated giant cells, and epithelioid cells infiltrating the granuloma. Furthermore, detectable levels of CCL20 protein are seen in the BAL fluid components of patients with active sarcoidosis, and sarcoid AMs release the CCR6 ligand in vitro. From a functional point of view, sarcoid Th1 cells were able to respond to CXCL10, CXCL16, and CCL20 in migratory assays. In vitro kinetic studies demonstrated that CCR6 is induced rapidly by IL-2, IL-18, and IFN-gamma. In conclusion, T cells expressing CCR6, CXCR3, and CXCR6 act coordinately with respective ligands and Th1 inflammatory cytokines in the alveolitic/granuloma phases of the disease.  (+info)

Mononuclear phagocyte-derived interleukin-10 suppresses the innate pulmonary granuloma cytokine response in aged mice. (63/104)

Granulomas are sequestration responses observed in a wide variety of clinical conditions, including mycobacterial infection. We previously reported impaired adaptive, Th1 cell-mediated pulmonary granuloma formation in response to bead-immobilized Mycobacterium bovis-purified protein derivative in aged mice. To reveal determinants of age-related immune deficits, the present study examined the effect of aging on early innate stage pulmonary granuloma formation. Aged mice formed more neutrophil-rich innate granulomas with augmented CXCL2 expression followed by a pattern of rapid decay of tumor necrosis factor-alpha, interleukin (IL)-6, CCL3, and CXCL2. This was associated with enhanced IL-10 expression. Blockade of IL-10 signaling with anti-IL-10 receptor antibody reversed the age-related decay. Intracellular flow cytometric analysis revealed that CD11b(+)Gr-1(+/-) mononuclear phagocytes were the primary leukocyte sources of IL-10 in lungs, and their numbers were increased in aged mice. When exposed to purified protein derivative in vitro, young and old CD11b(+)Gr-1(+/-) mononuclear phagocytes from blood or lung had comparable IL-10 expression, suggesting in vivo signals in the aged environment enhanced the number of IL-10-producing cells in the aged lung. Our findings reveal a novel mechanism of age-associated IL-10 mediated pulmonary immune suppression with the potential to alter downstream adaptive immunity.  (+info)

Pigeon hypersensitivity pneumonitis: immunohistochemical demonstration of the causative antigen in the lung. (64/104)

A number of clinicopathological manifestations may define the presence of hypersensitivity pneumonitis. Histological study is used to establish the diagnosis and to differentiate the disease from other respiratory disorders. This case report suggests that immunohistological demonstration of the causative antigen in the lung may be a useful diagnostic approach in cases of pigeon hypersensitivity pneumonitis. A 52 year-old woman was studied. She had a prior history of pigeon exposure, and lived in an area with a high prevalence of tuberculosis. Her clinical presentation, respiratory function tests and imaging studies revealed a predominant interstitial lung disease. The results of antiavian antibodies, bronchoalveolar analysis, and other laboratory parameters were non-diagnostic. A lung biopsy showed a prominent granulomatous reaction with a sarcoid-like appearance in some areas, and an interstitial infiltration constituted by lymphocytes, plasma cells and foamy macrophages. Although the disease manifestations were compatible with hypersensitivity pneumonitis, we decided to study the causal antigen by immunohistochemistry. The use of a polyclonal antibody raised against pigeon serum showed a predominant cytoplasmic immunostaining in multinucleated giant cells and histiocytes from lung granulomas. Other respiratory disorders were reasonably excluded. Previous exposure to a known antigen may support the diagnosis of hypersensitivity pneumonitis. Although the inhalation of organic dusts may be clinically evident, the aetiology is commonly evaluated by different challenge tests or immunological methods. We propose that the study of pigeon antigen by immunohistochemistry may be used as part of the diagnostic approach for hypersensitivity pneumonitis.  (+info)