Silicone foam sponge for pilonidal sinus: a new technique for dressing open granulating wounds. (33/330)

A silicone foam sponge has been used to replace the daily packing of deep granulating wounds with moist sterile gauze. In the treatment of pilonidal sinus use of the sponge demands less nursing time and is more comfortable for the patient than the excision and open granulation technique. Patients can usually return to work soon after operation. The method has many applications in surgery, and widespread application of the technique to the management of granulating wounds could result in considerable savings to the NHS in money and skilled nursing time.  (+info)

Defective angiogenesis in the inflammatory granulation tissue in histidine decarboxylase-deficient mice but not in mast cell-deficient mice. (34/330)

We have analyzed the role of histamine in the angiogenesis of the granulation tissue in histidine decarboxylase-deficient (HDC(-/-)) mice, mast cell-deficient mice (WBB6F1-W/W(V)), and their corresponding wild-type mice (HDC(+/+) and WBB6F(1)(+/+)). In HDC(+/+) mice, subcutaneous implantation of a cotton thread in the dorsum induced granulation tissue formation with angiogenesis, while the topical injection of anti-vascular endothelial growth factor (VEGF) IgG strongly suppressed them. In HDC(-/-) mice which showed lower VEGF levels in the granulation tissue, there was notably less angiogenesis and granulation tissue formation than in HDC(+/+) mice. The topical injection of histamine or the H(2) agonist dimaprit rescued the defective angiogenesis and granulation tissue formation in HDC(-/-) mice. There was no significant difference in the granulation tissue formation and angiogenesis between WBB6F1-W/W(V) and WBB6F1(+/+) mice. In addition, macrophages in the granulation tissue were found to express HDC. Our findings indicate that histamine derived from non-mast cells plays a significant role in the angiogenesis of the inflammatory granulation tissue.  (+info)

Adipogenic healing in adult mice by implantation of hollow devices in muscle. (35/330)

In mammals, wound healing is thought to result in the formation of scar tissue, with the exception of bony healing after fractures. Here we describe a previously unknown pattern of wound healing in which adipose rather than scar tissue is formed. Adipogenesis is normally confined to the embryo, although there are several experimental models for adipogenesis with highly specific dietary, cytokine, matrix, sex, or age requirements. The adipogenic healing described in this work provides a simple and reproducible experimental mouse model for adipogenesis without these limitations. Mice received intramuscular implants of nylon mesh material. Fibrinous material impregnated implants and within 4 weeks was replaced with highly vascular granulation tissue, typical of wound healing. Also consistent with wound healing was a reduction in vascularity of the newly formed tissue over time (P < 0.05). Lipoblasts were prevalent in granulation tissue, reaching a maximum in week 2 (P < 0.001) but falling to very low levels by week 9. These cells matured to adipocytes, with intermediate forms being seen. The identity of lipoblasts and adipocytes was confirmed by Oil Red O staining and electron microscopy. Control experiments confirmed that adipogenesis was independent of the materials used as well as of the sex and age of the animals. Rather, adipogenesis appeared to be due to replacement of fibrinous material in a space created within muscle. It is possible that adipogenic healing represents an adaptation for limiting the formation of restrictive scar tissues within muscle, and that this is the basis for the formation of traumatic lipomas in humans. Also, muscle tissue is replaced by adipose cells, seemingly derived from pluripotential satellite cells, in several degenerative muscle conditions, suggesting a role for adipogenic healing in these conditions.  (+info)

The NH2-terminal peptide of alpha-smooth muscle actin inhibits force generation by the myofibroblast in vitro and in vivo. (36/330)

Myofibroblasts are specialized fibroblasts responsible for granulation tissue contraction and the soft tissue retractions occurring during fibrocontractive diseases. The marker of fibroblast-myofibroblast modulation is the neo expression of alpha-smooth muscle actin (alpha-SMA), the actin isoform typical of vascular smooth muscle cells that has been suggested to play an important role in myofibroblast force generation. Actin isoforms differ slightly in their NH2-terminal sequences; these conserved differences suggest different functions. When the NH2-terminal sequence of alpha-SMA Ac-EEED is delivered to cultured myofibroblast in the form of a fusion peptide (FP) with a cell penetrating sequence, it inhibits their contractile activity; moreover, upon topical administration in vivo it inhibits the contraction of rat wound granulation tissue. The NH2-terminal peptide of alpha-skeletal actin has no effect on myofibroblasts, whereas the NH2-terminal peptide of beta-cytoplasmic actin abolishes the immunofluorescence staining for this isoform without influencing alpha-SMA distribution and cell contraction. The FPs represent a new tool to better understand the specific functions of actin isoforms. Our findings support the crucial role of alpha-SMA in wound contraction. The alpha-SMA-FP will be useful for the understanding of the mechanisms of connective tissue remodeling; moreover, it furnishes the basis for a cytoskeleton-dependent preventive and/or therapeutic strategy for fibrocontractive pathological situations.  (+info)

Diffusion-weighted imaging for differentiating recurrent cholesteatoma from granulation tissue after mastoidectomy: case report. (37/330)

Identification of recurrent cholesteatoma and differentiation from postoperative granulation tissue is important in a patient who has undergone mastoidectomy for cholesteatoma. We describe the diffusion-weighted imaging findings and apparent diffusion coefficient values in a case of recurrent cholesteatoma. This case suggests possible differentiation of cholesteatoma from granulation tissue on the basis of diffusion-weighted imaging findings.  (+info)

A role for endogenous glucocorticoids in wound repair. (38/330)

Exogenous glucocorticoids are known to inhibit wound repair, but the roles and mechanisms of action of endogenous glucocorticoids during the healing process are as yet unknown. Therefore, we wounded mice expressing a DNA-binding-defective mutant version of the glucocorticoid receptor (GR(dim) mice) and also analysed fibroblasts from these animals in vitro. We found a remarkably enlarged granulation tissue with a high fibroblast density in GR(dim) mice. This difference is likely to result from an increased migratory and proliferative capacity of GR(dim) fibroblasts and from elevated expression levels of soluble factors involved in granulation tissue formation in wounds of GR(dim) mice. In spite of the larger granulation tissue seen in early wounds, late wounds appeared normal, most likely due to an enhanced ability of GR(dim) fibroblasts to contract collagen. These results demonstrate an as yet unidentified role of endogenous glucocorticoids in the regulation of wound repair.  (+info)

The CXC chemokine cCAF stimulates precocious deposition of ECM molecules by wound fibroblasts, accelerating development of granulation tissue. (39/330)

BACKGROUND: During wound repair, fibroblasts orchestrate replacement of the provisional matrix formed during clotting with tenascin, cellular fibronectin and collagen III. These, in turn, are critical for migration of endothelial cells, keratinocytes and additional fibroblasts into the wound site. Fibroblasts are also important in the deposition of collagen I during scar formation. The CXC chemokine chicken Chemotactic and Angiogenic Factor (cCAF), is highly expressed by fibroblasts after wounding and during development of the granulation tissue, especially in areas where extracellular matrix (ECM) is abundant. We hypothesized that cCAF stimulates fibroblasts to produce these matrix molecules. RESULTS: Here we show that this chemokine can stimulate precocious deposition of tenascin, fibronectin and collagen I, but not collagen III. Studies in culture and in vivo show that tenascin stimulation can also be achieved by the N-terminal 15 aas of the protein and occurs at the level of gene expression. In contrast, stimulation of fibronectin and collagen I both require the entire molecule and do not involve changes in gene expression. Fibronectin accumulation appears to be linked to tenascin production, and collagen I to decreased MMP-1 levels. In addition, cCAF is chemotactic for fibroblasts and accelerates their migration. CONCLUSIONS: These previously unknown functions for chemokines suggest that cCAF, the chicken orthologue of human IL-8, enhances healing by rapidly chemoattracting fibroblasts into the wound site and stimulating them to produce ECM molecules, leading to precocious development of granulation tissue. This acceleration of the repair process may have important application to healing of impaired wounds.  (+info)

Adenovirus-mediated VEGF(165) gene transfer enhances wound healing by promoting angiogenesis in CD1 diabetic mice. (40/330)

It has been previously shown that vascular endothelial growth factor (VEGF) plays a central role in promoting angiogenesis during wound repair and that healing-impaired diabetic mice show decreased VEGF expression levels. In order to investigate the potential benefits of gene therapy with growth factors on wound repair, a replication-deficient recombinant adenovirus vector carrying the human VEGF(165) gene (AdCMV.VEGF(165)) was topically applied on excisional wounds of streptozotocin-induced diabetic mice. Treatment with AdCMV.VEGF(165) significantly accelerated wound closure when compared with AdCMV.LacZ-treated, as well as saline-treated control mice, by promoting angiogenesis at the site of injury. Our findings suggest that AdCMV.VEGF(165) may be regarded as a therapeutic tool for the treatment of diabetic ulcers.  (+info)