Expression of the C-C chemokine receptor 5 in human kidney diseases. (65/6768)

BACKGROUND: Chemokines are proteins that contribute to the migration of leukocytes to sites of tissue injury. CCR5 is a receptor for the C-C chemokine RANTES, which is expressed in inflammatory kidney diseases and transplant rejection. METHODS: In order to study the distribution of CCR5, we developed a series of monoclonal antibodies against human CCR5. These antibodies were then evaluated by flow cytometry, Western blot, and immunohistochemistry on formalin-fixed, paraffin-embedded tonsils. Eighty biopsies from patients with membranous glomerulonephritis (N = 9), IgA nephropathy (N = 10), lupus nephritis (N = 10), membranoproliferative glomerulonephritis (N = 10), acute interstitial nephritis (N = 13), chronic interstitial nephritis (N = 10), acute transplant rejection (N = 9), and chronic transplant rejection (N = 9) were stained for CCR5 and CD3 expression in parallel sections. RESULTS: One monoclonal antibody (MC-5) showed a single protein band of approximately 38 kD corresponding to CCR5 in Western blot. By indirect immunohistochemistry, a cell membrane signal was detected exclusively on mononuclear inflammatory cells. All control stainings with an isotype-matched mouse IgG2a were negative. CCR5-positive cells were identified in areas of interstitial infiltration in biopsies of chronic glomerulonephritis, interstitial nephritis, and transplant rejection. The staining of CCR5 showed the same distribution as CD3-positive T cells. In patients with impaired renal function, a significantly higher number of CCR5-positive cells were found as compared with patients with normal renal function. In contrast to the prominence of CCR5-positive cells in the interstitial infiltrate, the number of CCR5-positive cells within the glomeruli was low, even in cases with proliferative glomerulonephritis. No CCR5 expression could be detected on intrinsic cells of glomerular, tubular, or vascular structures. CONCLUSIONS: The pattern of CCR5 and CD3 cell infiltration suggests that CCR5-positive T cells may play a role in interstitial processes leading to fibrosis. Further studies are required to define the pathophysiological relevance of these cells in progressive renal diseases.  (+info)

Cytokine gene polymorphisms predict acute graft rejection following renal transplantation. (66/6768)

BACKGROUND: The proinflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) has been implicated in the pathogenesis of acute rejection, while animal models suggest a role for interleukin-10 (IL-10) in promoting graft survival. It has also been shown that polymorphisms in the TNFA gene promoter (position -308) and in the IL-10 gene promoter (position -1082) correlate with differential production of these cytokines in vitro. The aim of this study was to determine whether TNF-alpha and IL-10 gene polymorphisms influence the incidence and severity of acute rejection in the first six months following renal transplantation. METHODS: The cytokine genotypes of 115 consecutive first cadaveric kidney allograft recipients and their donors were screened. The rejection episodes (REs) were defined clinically and confirmed histologically where possible and further classified according to severity (RS), namely steroid-resistant or responsive REs. The genotypes were then correlated with the REs and RS. RESULTS: The recipient TNF-alpha high producer genotype and IL-10 high producer genotype were significantly associated with multiple REs (>/=2) in human leukocyte antigen (HLA)-DR mismatched transplants (P = 0.0047 and P = 0.045, respectively), whereas only the TNF-alpha high producer genotype was associated with steroid-resistant REs (P = 0.025). When recipient cytokines were analyzed together, the TNF-alpha high/IL-10 high producer genotype had the worst prognosis, whereas TNF-alpha low/IL-10 low producer genotype was protective. CONCLUSIONS: We conclude that recipient TNF-alpha and IL-10 gene polymorphisms are determinants of REs and RS following kidney transplantation. Routine screening of these gene polymorphisms may have a clinical role in identifying patients at risk of multiple REs and severe rejections.  (+info)

Discoordinate modulation of natriuretic peptides during acute cardiac allograft rejection in humans. (67/6768)

BACKGROUND: Increased circulating levels of the cardiac polypeptide hormones atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP) may be observed after orthotopic cardiac transplantation. Both the hypertrophic and inflammatory processes in the allograft may contribute to this increase, but no mechanistic explanation has been suggested for this observation. METHODS AND RESULTS: Plasma immunoreactive ANF and BNP determinations were performed in 10 consecutive transplant patients. These were correlated with degree of rejection as reflected by histopathological findings at serial endomyocardial biopsies. Three patients had associated hemodynamic measurements and blood samples 24 hours before and after transplantation. All rejection episodes that received treatment were accompanied by a marked increase in BNP plasma levels to > approximately 400 pg/mL. Steadily increasing BNP levels preceded overt rejection as assessed by histopathological criteria. The increase in plasma BNP was not always accompanied by an increase in ANF, which suggests the specific upregulation of BNP gene expression during acute rejection episodes. Treatment of the acute rejection episodes led to a substantial decrease of BNP plasma levels. CONCLUSIONS: The significant selective increase in plasma BNP levels found in the present study has not been previously described. This finding provides a new insight into the mechanism of allograft rejection and the modulation of natriuretic peptide synthesis and release. Furthermore, although preliminary, the data suggest that BNP plasma levels could form the basis for a new, noninvasive screening test to predict acute cardiac allograft rejection. Because treatment with the antilymphocyte monoclonal antibody OKT3 (murine monoclonal antibody to the CD3 antigen of the human T-cell) decreased BNP plasma levels, cytokine production by T-cells may mediate the selective increase in circulating BNP.  (+info)

CD4(+) T cells eliminate MHC class II-negative cancer cells in vivo by indirect effects of IFN-gamma. (68/6768)

CD4(+) T cells can eliminate tumor cells in vivo in the absence of CD8(+) T cells. We have CD4(+) T cells specific for a MHC class II-restricted, tumor-specific peptide derived from a mutant ribosomal protein expressed by the UV light-induced tumor 6132A-PRO. By using neutralizing mAb specific for murine IFN-gamma and adoptive transfer of CD4(+) T cells into severe combined immunodeficient mice, we show that anti-IFN-gamma treatment abolishes the CD4(+) T cell-mediated rejection of the tumor cells in vivo. The tumor cells were MHC class II negative, and IFN-gamma did not induce MHC class II expression in vitro. Therefore, the tumor-specific antigenic peptide must be presented by host cells and not the tumor cells. Tumor cells transduced to secrete IFN-gamma had a markedly reduced growth rate in severe combined immunodeficient mice, but IFN-gamma did not inhibit the growth of the tumor cells in vitro. Furthermore, tumor cells stably expressing a dominant-negative truncated form of the murine IFN-gamma receptor alpha chain, and therefore insensitive to IFN-gamma, nevertheless were rejected by the adoptively transferred CD4(+) T cells. Thus, host cells, and not tumor cells, seem to be the target of IFN-gamma. Together, these results show that CD4(+) T cells can eliminate IFN-gamma-insensitive, MHC class II-negative cancer cells by an indirect mechanism that depends on IFN-gamma.  (+info)

CD8(+) minor histocompatibility antigen-specific cytotoxic T lymphocyte clones eliminate human acute myeloid leukemia stem cells. (69/6768)

Effective immunotherapy for human leukemia based on infusions of T lymphocytes requires the identification of effector T cells that target the leukemic stem cell. The transplantation of human acute myeloid leukemia into nonobese diabetic/severe combined immune deficient (SCID) mice has identified a rare leukemic progenitor termed the SCID leukemia-initiating cell, which is present in low frequency in the leukemic population and is essential for establishing leukemic hematopoiesis. Thus, this transplant model may be ideally suited to identify effector T cells with antileukemic activity. We report that CD8(+) cytotoxic T lymphocyte (CTL) clones specific for minor histocompatibility antigens inhibit the engraftment of human acute myeloid leukemia cells in nonobese diabetic/SCID mice and demonstrate that this inhibition is mediated by direct CTL recognition of SCID leukemia-initiating cells. These results indicate that CD8(+) minor histocompatibility antigen-specific CTL may be mediators of the graft-versus-leukemia effect associated with allogeneic hematopoietic cell transplantation and provide an experimental model to identify and select T cell clones for immunotherapy to prevent or treat relapse after allogeneic hematopoietic cell transplantation.  (+info)

Multiple deficiencies underlie NK cell inactivity in lymphotoxin-alpha gene-targeted mice. (70/6768)

We have evaluated the NK cell antitumor activity in lymphotoxin (LT)-deficient mice. Both NK cell-mediated tumor rejection and protection from experimental metastases were significantly compromised in LT-alpha-deficient mice. Analysis of LT-alpha-deficient mice revealed that the absolute number of alphabetaTCR- NK1.1+ NK cells was reduced in bone marrow and thymus, but with overall proportional decreases in other hemopoietic organs. In addition, the antitumor potential of alphabetaTCR- NK1.1+ cells, as determined by their lytic capacity and perforin expression, was reduced 1.5- to 3-fold in LT-alpha-deficient mice, as compared with wild-type mice. Combined defects in NK cell development and effector function contribute to compromised NK cell antitumor function in LT-alpha-deficient mice.  (+info)

Stable mixed hematopoietic chimerism in dog leukocyte antigen-identical littermate dogs given lymph node irradiation before and pharmacologic immunosuppression after marrow transplantation. (71/6768)

Stable mixed donor/host hematopoietic chimerism can be accomplished in dog leukocyte antigen (DLA)-identical littermate dogs given sublethal (200 cGy) total-body irradiation (TBI) before and immunosuppression with mycophenolate mofetil (MMF) and cyclosporine (CSP) after transplant (Blood 89:3048, 1997). Studies were based on the hypothesis that drugs that prevent graft-versus-host disease (GVHD) after transplant also suppress host-versus-graft (HVG) reactions and thereby enhance engraftment. Here, we asked whether pretransplant TBI provided marrow space for the graft to home or caused host immunosuppression. To address the questions, recipients were given pretransplant irradiation to cervical, thoracic, and abdominal lymph nodes (except pelvis), DLA-identical littermate marrow grafts, and MMF/CSP posttransplant. Six dogs that received 450 cGy irradiation showed initial engraftment. Two rejected their grafts after 8 and 18 weeks, 1 died with GVHD and engraftment, and 3 are alive as mixed chimeras after 57 to 97 weeks. Four dogs given 200 cGy irradiation also showed initial engraftment, but rejected their grafts after 10 to 18 weeks. Mixed chimerism was present in nonirradiated marrow and lymph node spaces and involved granulocytes, T cells, and monocytes. While other explanations are possible, results seem consistent with the hypothesis that pretransplant radiation provides host immunosuppression, and grafts can create their own marrow space. These data set the stage for the development of novel transplant regimens that substitute immunosuppressive for cytotoxic agents.  (+info)

Met-RANTES reduces vascular and tubular damage during acute renal transplant rejection: blocking monocyte arrest and recruitment. (72/6768)

Chemokines are thought to contribute to the cellular infiltrate characteristic of renal transplant rejection. We show that Met-RANTES, a chemokine receptor antagonist, suppresses recruitment of inflammatory cells into renal allografts. In a renal transplant model (Fisher RT1(lvl) rat kidney into Lewis RT1(l) rat) where no additional immune suppressant was used, Met-RANTES-treated animals showed a significant reduction in vascular injury score (16.10 +/- 5.20 vs. 62.67 +/- 18.64) and tubular damage score (15.70 +/- 5.22 vs. 33.00 +/- 6.44) relative to untreated animals. In a more severe rejection model (Brown-Norway RT1(n) rat kidney into Lewis RT1(1) rat), Met-RANTES significantly augmented low-dose cyclosporin A treatment to reduce all aspects of renal injury including interstitial inflammation (score 71.00 +/- 6.10 vs. 157.30 +/- 21.30). The majority of infiltrating cells in these models (60-70%) consisted of monocytes. Potential mechanisms of action of Met-RANTES were tested using monocyte attachment assays on microvascular endothelium under physiological flow conditions. Preexposure of microvascular endothelium to RANTES resulted in RANTES immobilization and RANTES-induced firm adhesion of monocytes only after prestimulation of the endothelium with IL-1beta. Met-RANTES completely inhibited this RANTES-mediated arrest. Thus, Met-RANTES may counter acute rejection by blocking leukocyte firm adhesion to inflamed endothelium.  (+info)