The Wilms' tumor suppressor gene (wt1) product regulates Dax-1 gene expression during gonadal differentiation. (1/1073)

Gonadal differentiation is dependent upon a molecular cascade responsible for ovarian or testicular development from the bipotential gonadal ridge. Genetic analysis has implicated a number of gene products essential for this process, which include Sry, WT1, SF-1, and DAX-1. We have sought to better define the role of WT1 in this process by identifying downstream targets of WT1 during normal gonadal development. We have noticed that in the developing murine gonadal ridge, wt1 expression precedes expression of Dax-1, a nuclear receptor gene. We document here that the spatial distribution profiles of both proteins in the developing gonad overlap. We also demonstrate that WT1 can activate the Dax-1 promoter. Footprinting analysis, transient transfections, promoter mutagenesis, and mobility shift assays suggest that WT1 regulates Dax-1 via GC-rich binding sites found upstream of the Dax-1 TATA box. We show that two WT1-interacting proteins, the product of a Denys-Drash syndrome allele of wt1 and prostate apoptosis response-4 protein, inhibit WT1-mediated transactivation of Dax-1. In addition, we demonstrate that WT1 can activate the endogenous Dax-1 promoter. Our results indicate that the WT1-DAX-1 pathway is an early event in the process of mammalian sex determination.  (+info)

The effects of a t-allele (tAE5) in the mouse on the lymphoid system and reproduction. (2/1073)

Mice homozygous for tAE5, a recessive allele at the complex T-locus, are characterized by their unique short-tailed phenotype as well as by runting and low fertility. Histological and histochemical studies of the lymphoid and reproductive systems disclosed structural changes in the mutant spleen resembling those found in autoimmune conditions. Involution of the mutant thymus was greatly accelerated compared to normal. Necrotic changes occurred during spermiogenesis whereas ovarian structure was normal in mutants. The possible mechanisms of the mutant effects are discussed in the framework of other similar syndromes and the mode of action of alleles at the complex T-locus.  (+info)

Characterization of a Caenorhabditis elegans recA-like gene Ce-rdh-1 involved in meiotic recombination. (3/1073)

A recA-like gene was identified in the Caenorhabditis elegans genome project database. The putative product of the gene, termed Ce-rdh-1 (C. elegans RAD51 and DMC1/LIM15 homolog 1), consists of 357 amino acid residues. The predicted amino acid sequence of Ce-rdh-1 showed 46-60% identity to both RAD51 type and DMC1/LIM15 type genes in several eukaryote species. The results of RNAi (RNA-mediated interference) indicated that repression of Ce-rdh-1 blocked chromosome condensation of six bivalents and dissociation of chiasmata in oocytes of F1 progeny. Oogenesis did not proceed to the diakinesis stage. Accordingly, all the eggs produced (F2) died in early stages. These results suggest that Ce-rdh-1 participates in meiotic recombination.  (+info)

Patterning of Caenorhabditis elegans posterior structures by the Abdominal-B homolog, egl-5. (4/1073)

The Caenorhabditis elegans body axis, like that of other animals, is patterned by the action of Hox genes. In order to examine the function of one C. elegans Hox gene in depth, we determined the postembryonic expression pattern of egl-5, the C. elegans member of the Abdominal-B Hox gene paralog group, by means of whole-mount staining with a polyclonal antibody. A major site of egl-5 expression and function is in the epithelium joining the posterior digestive tract with the external epidermis. Patterning this region and its derived structures is a conserved function of Abd-B paralog group genes in other animals. Cells that initiate egl-5 expression during embryogenesis are clustered around the presumptive anus. Expression is initiated postembryonically in four additional mesodermal and ectodermal cell lineages or tissues. Once initiated in a lineage, egl-5 expression continues throughout development, suggesting that the action of egl-5 can be regarded as defining a positional cell identity. A variety of cross-regulatory interactions between egl-5 and the next more anterior Hox gene, mab-5, help define the expression domains of their respective gene products. In its expression in a localized body region, function as a marker of positional cell identity, and interactions with another Hox gene, egl-5 resembles Hox genes of other animals. This suggests that C. elegans, in spite of its small cell number and reproducible cell lineages, may not differ greatly from other animals in the way it employs Hox genes for regional specification during development.  (+info)

A new lethal syndrome of exomphalos, short limbs, and macrogonadism. (5/1073)

We report a new lethal multiple congenital abnormality (MCA) syndrome of exomphalos, short limbs, nuchal web, macrogonadism, and facial dysmorphism in seven fetuses (six males and one female) belonging to three unrelated families. X rays showed enlarged and irregular metaphyses with a heterogeneous pattern of mineralisation of the long bones. Pathological examination showed adrenal cytomegaly, hyperplasia of Leydig cells, ovarian stroma cells, and Langherans cells, and renal microcysts. We suggest that this condition is a new autosomal recessive MCA syndrome different from Beckwith-Wiedemann syndrome, especially as no infracytogenetic deletion or uniparental disomy of chromosome 11 was found.  (+info)

Mouse primordial germ cells lacking beta1 integrins enter the germline but fail to migrate normally to the gonads. (6/1073)

Primordial germ cells are the founder cells of the gametes. They are set aside at the initial stages of gastrulation in mammals, become embedded in the hind-gut endoderm, then actively migrate to the sites of gonad formation. The molecular basis of this migration is poorly understood. Here we sought to determine if members of the integrin family of cell surface receptors are required for primordial germ cell migration, as integrins have been implicated in the migration of several other motile cell types. We have established a line of mice which express green fluorescent protein in germline cells that has enabled us to efficiently purify primordial germ cells at different stages by flow cytometry. We have catalogued the spectrum of integrin subunit expression by primordial germ cells during and after migration, using flow cytometry, immunocytochemistry and RT-PCR. Through analysis of integrin beta1(-/-)-->wild-type chimeras, we show that embryonic cells lacking beta1 integrins can enter the germline. However, integrin beta1(-/-) primordial germ cells do not colonize the gonad efficiently. Embryos with targeted deletion of integrin subunit alpha3, alpha6, or alphaV show no major defects in primordial germ cell migration. These results demonstrate a role for beta1-containing integrins in the development of the germline, although an equivalent role for * integrin subunit(s) has yet to be established.  (+info)

The sexually dimorphic expression of androgen receptors in the song nucleus hyperstriatalis ventrale pars caudale of the zebra finch develops independently of gonadal steroids. (7/1073)

The development of sex differences in brain structure and brain chemistry ("brain sex") of vertebrates is frequently thought to depend entirely on gonadal steroids such as androgens and estrogens, which act on the brain at the genomic level by binding to intracellular transcription factors, the androgen receptors (ARs) and estrogen receptors (ERs). These hormone actions are thought to shift the brain from a monomorphic to a dimorphic phenotype. One prominent such example is the nucleus hyperstriatalis ventrale pars caudale (HVc) of the zebra finch (Poephila guttata), a set of cells in the caudal forebrain involved in the control of singing. In contrast with previous studies using nonspecific cell staining techniques, the size and neuron number of the HVc measured by the distribution of AR mRNA is already sexually dimorphic on posthatching day (P)9. No ARs or ERs are expressed in the HVc before day 9. Slice cultures of the caudal forebrain of P5 animals show that the sexually dimorphic expression of AR mRNA in HVc is independent of the direct action of steroids on this nucleus or any of its immediate presynaptic or postsynaptic partners. Therefore, gonadal steroids do not appear to be directly involved in the initial sex difference in the expression pattern of AR mRNA, size, and neuron number of the HVc. Furthermore, we demonstrate that the initial steroid-independent size and its subsequent steroid-independent growth by extension linearly with the extension of the forebrain explains 60-70% of the masculine development of the HVc. Thus, we suggest that epigenetic factors such as the gonadal steroids modify but cannot overwrite the sex difference in HVc volume determined autonomously in the brain.  (+info)

The Caenorhabditis elegans mel-11 myosin phosphatase regulatory subunit affects tissue contraction in the somatic gonad and the embryonic epidermis and genetically interacts with the Rac signaling pathway. (8/1073)

Caenorhabditis elegans embryonic elongation is driven by cell shape changes that cause a contraction of the epidermal cell layer enclosing the embryo. We have previously shown that this process requires a Rho-associated kinase (LET-502) and is opposed by the activity of a myosin phosphatase regulatory subunit (MEL-11). We now extend our characterization and show that mel-11 activity is required both in the epidermis during embryonic elongation and in the spermatheca of the adult somatic gonad. let-502 and mel-11 reporter gene constructs show reciprocal expression patterns in the embryonic epidermis and the spermatheca, and mutations of the two genes have opposite effects in these two tissues. These results are consistent with let-502 and mel-11 mediating tissue contraction and relaxation, respectively. We also find that mel-11 embryonic inviability is genetically enhanced by mutations in a Rac signaling pathway, suggesting that Rac potentiates or acts in parallel with the activity of the myosin phosphatase complex. Since Rho has been implicated in promoting cellular contraction, our results support a mechanism by which epithelial morphogenesis is regulated by the counteracting activities of Rho and Rac.  (+info)