Heat energy for growing goats and sheep grazing different pastures in the summer. (25/3173)

Angora goat, Spanish goat, and Suffolk x Rambouillet sheep wethers (20 of each type; 30.4+/-.57, 31.3+/-.93, and 32.4+/-1.08 kg BW for Angora goats, Spanish goats, and sheep, respectively) were used to investigate influences of animal type and two grass-based pasture treatments on heat energy during summer grazing (mid-August through September in Oklahoma). The improved pasture treatment consisted of .7-ha paddocks primarily of Old World bluestem and johnsongrass, whereas the native pasture treatment entailed 10.8-ha paddocks dominated by big and little bluestems and indiangrass. Grasses were 95 to 100% of diets for the improved pasture treatment and 71 to 95% for the native pasture treatment; forbs were 2 to 25%, and shrubs were less than 4% of diets for the native pasture treatment. Metabolizable energy intake was similar (P > . 10) between pasture treatments but differed (P <.01) among animal types: 79, 99, and 113 kcal/(kg(.75) BW.d) for Angora goats, Spanish goats, and sheep, respectively; SE 7.1. Heat energy estimated via CO2 entry rate was affected by pasture treatment ( P = .08) and animal type (P < .001): improved pasture treatment 109, 132, and 151 kcal/(kg(.75) BW.d); native pasture treatment 126, 138, and 163 kcal/(kg(.75) BW.d) for Angora goats, Spanish goats, and sheep, respectively. Likewise, daylight grazing time was greater (P = .04) for the native than for the improved pasture treatment and differed (P < .01) among animal types: improved pasture treatment 5.3, 4.7, and 6.7 h; native pasture treatment 6.0, 5.7, and 8.1 h for Angora goats, Spanish goats, and sheep, respectively. In conclusion, heat energy during summer grazing of grass-based paddocks was less for goats than for sheep, and animal type can affect the increase in heat energy as energy intake and grazing time increase.  (+info)

Maturation-dependent modification of the protein phosphorylation profile of isolated goat sperm plasma membrane. (26/3173)

Highly purified plasma membranes, isolated by an aqueous two-phase polymer method from goat epididymal spermatozoa, were found to possess a kinase activity that causes phosphorylation of serine and threonine residues of several endogenous plasma membrane proteins. Cyclic AMP, cyclic GMP, Ca(2+)-calmodulin, phosphatidylserine-diolein, polyamines and heparin had no appreciable effect on this kinase. Autoradiographic analysis showed that the profile of the phosphorylation of membrane proteins by this endogenous cAMP-independent protein kinase underwent marked modulation during the transit of spermatozoa through the epididymis. In caput sperm plasma membrane, 18, 21, 43, 52, 74 and 90 kDa proteins were phosphorylated, whereas, in the corpus and cauda epididymal spermatozoa, a differential phosphorylation pattern was observed with respect to the 90, 74, 21 and 18 kDa proteins. The rate of phosphorylation of the 74 kDa protein decreased markedly during the early phase of sperm maturation (caput to distal corpus epididymides) whereas there was little change in kinase activity in sperm plasma membrane. In contrast, the rates of phosphorylation of the 18 and 21 kDa proteins increased during the terminal phase (distal corpus to distal cauda epididymides) of sperm maturity, although the kinase activity of membrane decreased significantly during this phase. The modulation of the phosphorylated states of these specific membrane proteins may play an important role in the maturation of epididymal spermatozoa.  (+info)

Analysis of ruminant respiratory syncytial virus isolates by RNAse protection of the G glycoprotein transcripts. (27/3173)

Two different respiratory syncytial virus (RSV) radiolabeled probes were used to characterize the genetic heterogeneity of 25 ruminant RSV isolates by the ribonuclease protection assay. A 32P-radiolabeled antisense RNA probe was transcribed from cloned ovine and bovine RSV G glycoprotein genes and then hybridized with total RNA isolated from infected cells with various ruminant RSV isolates. The results of this study, along with previously published nucleotide sequence data of the ovine RSV G glycoprotein gene, suggest the presence of at least 2 ruminant RSV subgroups. One subgroup is represented by RSV isolated from respiratory disease outbreaks from calves and goats, and the other is represented by RSV isolated from sheep.  (+info)

A lysosomal storage disease induced by Ipomoea carnea in goats in Mozambique. (28/3173)

A novel plant-induced lysosomal storage disease was observed in goats from a village in Mozambique. Affected animals were ataxic, with head tremors and nystagmus. Because of a lack of suitable feed, the animals consumed an exotic hedge plant growing in the village that was identified as Ipomoea carnea (shrubby morning glory, Convolvulaceae). The toxicosis was reproduced by feeding I. carnea plant material to goats. In acute cases, histologic changes in the brain and spinal cord comprised widespread cytoplasmic vacuolation of neurons and glial cells in association with axonal spheroid formation. Ultrastructurally, cytoplasmic storage vacuoles in neurons were membrane bound and consistent with lysosomes. Cytoplasmic vacuolation was also found in neurons in the submucosal and mesenteric plexuses in the small intestine, in renal tubular epithelial cells, and in macrophage-phagocytic cells in the spleen and lymph nodes in acute cases. Residual alterations in the brain in chronic cases revealed predominantly cerebellar lesions characterized by loss of Purkinje neurons and gliosis of the Purkinje cell layer. Analysis of I. carnea plant material by gas chromatography-mass spectrometry established the presence of the mannosidase inhibitor swainsonine and 2 glycosidase inhibitors, calystegine B2 and calystegine C1, consistent with a plant-induced alpha-mannosidosis in the goats. The described storage disorder is analogous to the lysosomal storage diseases induced by ingestion of locoweeds (Astragalus and Oxytropis) and poison peas (Swainsona).  (+info)

Electrophysiological correlates of pulsatile and surge gonadotrophin secretion. (29/3173)

The hypothalamic gonadotrophin-releasing hormone (GnRH) pulse generator governs intermittent discharges of GnRH into the pituitary portal circulation and, consequently, modulates the pulsatile pattern of gonadotrophin secretion. Electrophysiological correlates of pulsatile gonadotrophin secretion have been demonstrated in the mediobasal hypothalamus of monkeys, rats and goats by recording multiple unit activity. A temporal coincidence between characteristic increases in multiple unit activity and gonadotrophin pulses in the circulation is seen under a variety of physiological and experimental conditions in all three species examined, providing evidence that hypothalamic multiple unit activity originates in the GnRH pulse generator. During a preovulatory gonadotrophin surge induced by oestrogen in ovariectomized animals or occurring spontaneously in intact animals, GnRH pulse generator activity is decelerated, suggesting that it is not involved in generating the gonadotrophin surge. The gonadotrophin surge may be generated by an oestrogen-responsive neuronal complex intrinsically different from the GnRH pulse generator, the electrical operation of which remains unknown.  (+info)

The effects of two antiinflammatory pretreatments on bacterial-induced lung injury. (30/3173)

BACKGROUND: Two antiinflammatory therapies that have been effective in preventing acid-induced lung injury were evaluated. Specifically, their effects on a subsequent bacterial-airspace challenge were compared. Bacteria were instilled 24 h after acid-induced lung injury. Pseudomonas aeruginosa PAO-1 was used as the bacteria, because its effects in healthy lungs was documented previously. METHODS: New Zealand white rabbits were anesthetized and three pretreatments were administered: (1) pentoxifylline pretreatment (a 20-mg/kg bolus dose and then 6 mg x kg(-1) x h(-1) given intravenously), (2) 1 ml anti-tumor necrosis factor alpha antiserum given intravenously, or (3) normal saline given intravenously. The pretreatment doses were shown previously to prevent acid-induced lung injury. Then 1.2 ml/kg hydrochloric acid (HCl), pH 1.25, was instilled into the rabbits' right lungs. All the animals underwent mechanical ventilation for 8 h. Twenty-four hours after the acid instillation, the rabbits were anesthetized again and 2 ml/kg (10(9) colony forming units/ml) PAO-1 was instilled into their left lungs. The rabbits' breathing was aided by mechanical ventilation for another 8 h, and then they were killed and exsanguinated. RESULTS: Both pretreatments attenuated the acid-induced lung injury of the noninstilled left lungs. Arterial oxygen tension and the lung edema of pretreated, acid-exposed animals were significantly and almost equally improved (compared with no pretreatments) by either of the pretreatments. However, when the bacteria were instilled into the left lungs 24 h after the acid injury, the pentoxifylline pretreatment but not the anti-tumor necrosis factor alpha pretreatment prevented much of the bacteria-induced lung injury. Pentoxifylline pretreatment significantly improved the measurements of left lung edema and epithelial and endothelial permeability. There was also a trend for improved oxygenation in the pentoxifylline-pretreated and infected animals. In contrast, the anti-tumor necrosis factor alpha pretreatment did not prevent the bacteria-induced lung injury and increased some of the measurements of lung injury. CONCLUSIONS: Two antiinflammatory therapies that prevented acid-induced lung injury to the noninstilled left lungs had significantly different effects on a subsequent bacteria-induced lung injury to the left lungs. The therapies differed in their mechanism of tumor necrosis factor alpha blockade, and this may have affected the bacteria-induced injury to the lungs.  (+info)

Cardiovascular changes associated with dehydration and drinking in unrestrained, lactating goats. (31/3173)

The aim of this study was to investigate if the alertness connected with seeing water increased arterial blood pressure and heart rate to the same extent as the act of drinking, and if ingestion of warm water caused a different effect compared with ingestion of cool water on these cardiovascular variables. Seven goats of the Swedish domestic breed (Capra hircus) were used in a cross-over design. The animals were dehydrated for 24 h. They were allowed to watch water being prepared for 11-16 min, after which they were given access to warm (35 degrees C) or cool (15 degrees C) water. The goats drank 6.86 +/- 0.36 l of the warm water and 4.54 +/- 0.35 l of the cool water (P < 0.05) within the first hour. The arterial blood pressure, heart rate and activity of the animals were registered by an implanted telemetric device. Dehydration did not affect the cardiovascular variables, except before feeding in the morning, when the heart rate accelerated faster in dehydrated goats. Heart rate increased abruptly when dehydrated goats saw water being prepared, remained at the increased level during drinking and then slowly declined. It increased again during the afternoon feeding, to a level similar to that on control days, but between 18.00 and 06.00 h the heart rate was higher than during control nights. Blood pressure did not change when the goats saw water, but increased when they drank. On the morning following rehydration, the rise in heart rate in response to feeding was delayed compared with that during control and dehydration periods. It is concluded that seeing water caused arousal in the goats, resulting in an accelerated heart rate. The additional rise in blood pressure during the act of drinking appears to be a combination of excitement and sensory inputs from the pharyngeal region, causing a temporary activation of the sympathetic nervous system.  (+info)

Goat milk epithelial cells are highly permissive to CAEV infection in vitro. (32/3173)

The main route of small ruminant lentivirus dissemination is the ingestion of infected cells present in colostrum and milk from infected animals. However, whether only macrophages or other cell subtypes are involved in this transmission is unknown. We derived epithelial cell cultures, 100% cytokeratin positive, from milk of naturally infected and noninfected goats. One such culture, derived from a naturally infected goat, constitutively produced a high titer of virus in the absence of any cytopathic effect. The other cultures, negative for natural lentivirus infection, were tested for their susceptibility to infection with the CAEV-CO strain and a French field isolate CAEV-3112. We showed that milk epithelial cells are easily infected by either virus and produce viruses at titers as high as those obtained in permissive goat synovial membrane cells. The CAEV-CO strain replicated in milk epithelial cells in absence of any cytopathic effect, whereas the CAEV-3112 field isolate induced both cell fusion and cell lysis. Our results suggest that CAEV-infected milk epithelial cells of small ruminants may play an important role in virus transmission and pathogenesis.  (+info)