(1/19351) Neu differentiation factor stimulates phosphorylation and activation of the Sp1 transcription factor.

Neu differentiation factors (NDFs), or neuregulins, are epidermal growth factor-like growth factors which bind to two tyrosine kinase receptors, ErbB-3 and ErbB-4. The transcription of several genes is regulated by neuregulins, including genes encoding specific subunits of the acetylcholine receptor at the neuromuscular junction. Here, we have examined the promoter of the acetylcholine receptor epsilon subunit and delineated a minimal CA-rich sequence which mediates transcriptional activation by NDF (NDF-response element [NRE]). Using gel mobility shift analysis with an NRE oligonucleotide, we detected two complexes that are induced by treatment with neuregulin and other growth factors and identified Sp1, a constitutively expressed zinc finger phosphoprotein, as a component of one of these complexes. Phosphatase treatment, two-dimensional gel electrophoresis, and an in-gel kinase assay indicated that Sp1 is phosphorylated by a 60-kDa kinase in response to NDF-induced signals. Moreover, Sp1 seems to act downstream of all members of the ErbB family and thus may funnel the signaling of the ErbB network into the nucleus.  (+info)

(2/19351) Regulation of neurotrophin-3 expression by epithelial-mesenchymal interactions: the role of Wnt factors.

Neurotrophins regulate survival, axonal growth, and target innervation of sensory and other neurons. Neurotrophin-3 (NT-3) is expressed specifically in cells adjacent to extending axons of dorsal root ganglia neurons, and its absence results in loss of most of these neurons before their axons reach their targets. However, axons are not required for NT-3 expression in limbs; instead, local signals from ectoderm induce NT-3 expression in adjacent mesenchyme. Wnt factors expressed in limb ectoderm induce NT-3 in the underlying mesenchyme. Thus, epithelial-mesenchymal interactions mediated by Wnt factors control NT-3 expression and may regulate axonal growth and guidance.  (+info)

(3/19351) A novel class of protein from wheat which inhibits xylanases.

We have purified a novel class of protein that can inhibit the activity of endo-beta-1,4-xylanases. The inhibitor from wheat (Triticum aestivum, var. Soisson) is a glycosylated, monomeric, basic protein with a pI of 8.7-8.9, a molecular mass of 29 kDa and a unique N-terminal sequence of AGGKTGQVTVFWGRN. We have shown that the protein can inhibit the activity of two family-11 endo-beta-1, 4-xylanases, a recombinant enzyme from Aspergillus niger and an enzyme from Trichoderma viride. The inhibitory activity is heat and protease sensitive. The kinetics of the inhibition have been characterized with the A. niger enzyme using soluble wheat arabinoxylan as a substrate. The Km for soluble arabinoxylan in the absence of inhibitor is 20+/-2 mg/ml with a kcat of 103+/-6 s-1. The kinetics of the inhibition of this reaction are competitive, with a Ki value of 0.35 microM, showing that the inhibitor binds at or close to the active site of free xylanase. This report describes the first isolation of a xylanase inhibitor from any organism.  (+info)

(4/19351) Structural characterization of the N-linked oligosaccharides in bile salt-stimulated lipase originated from human breast milk.

The detailed structures of N- glycans derived from bile salt-stimulated lipase (BSSL) found in human milk were determined by combining exoglycosidase digestion with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The N- glycan structures were conclusively determined in terms of complexity and degree of fucosylation. Ion-exchange chromatography with pulsed amperometric detection, together with mass-spectral analysis of the esterified N- glycans, indicated the presence of monosialylated structures. The molecular mass profile of esterified N- glycans present in BSSL further permitted the more detailed studies through collision-induced dissociation (CID) and sequential exoglycosidase cleavages. The N- glycan structures were elucidated to be complex/dibranched, fucosylated/complex/dibranched, monosialylated/complex/dibranched, and monosialylated/fucosylated/dibranched entities.  (+info)

(5/19351) Gas-liquid chromatography of the heptafluorobutyrate derivatives of the O-methyl-glycosides on capillary columns: a method for the quantitative determination of the monosaccharide composition of glycoproteins and glycolipids.

We have developed a method involving the formation of hepta-fluorobutyrate derivatives of O-methyl-glycosides liberated from glycoproteins and glycolipids following methanolysis. The stable derivatives of the most common monosaccharides of these glycoconjugates (Ara, Rha, Xyl, Fuc, Gal, Man, Glc, GlcNAc, GalNAc, Neu5Ac, KDN) can be separated and quantitatively and reproducibly determined with a high degree of sensitivity level (down to 25 pmol) in the presence of lysine as an internal standard. The GlcNAc residue bound to Asn in N-glycans is quantitatively recovered as two peaks. The latter were easily distinguished from the other GlcNAc residues of N-glycans, thus allowing a considerable improvement of the data on structure of N-glycans obtained from a single carbohydrate analysis. The most common contaminants present in buffers commonly used for the isolation of soluble or membrane-bound glycoproteins (SDS, Triton X-100, DOC, TRIS, glycine, and polyacrylamide or salts, as well as monosaccharide constituents of proteoglycans or degradation products of nucleic acids) do not interfere with these determinations. A carbohydrate analysis of glycoproteins isolated from a SDS/PAGE gel or from PDVF membranes can be performed on microgram amounts without significant interferences. Since fatty acid methyl esters and sphingosine derivatives are separated from the monosaccharide peaks, the complete composition of gangliosides can be achieved in a single step starting from less than 1 microg of the initial compound purified by preparative Silicagel TLC. Using electron impact ionization mass spectrometry, reporter ions for the different classes of O-methyl-glycosides (pentoses, deoxy-hexoses, hexoses, hexosamines, uronic acids, sialic acid, and KDN) allow the identification of these compounds in very complex mixtures. The mass of each compound can be determined in the chemical ionization mode and detection of positive or negative ions. This method presents a considerable improvement compared to those using TMS derivatives. Indeed the heptafluorobutyrate derivatives are stable, and acylation of amino groups is complete. Moreover, there is no interference with contaminants and the separation between fatty acid methyl-esters and O-methyl glycosides is achieved.  (+info)

(6/19351) Antiphospholipid, anti-beta 2-glycoprotein-I and anti-oxidized-low-density-lipoprotein antibodies in antiphospholipid syndrome.

Antiphospholipid antibodies (aPL), anti-beta 2-glycoprotein I (anti-beta 2-GPI) and anti-oxidized-low-density lipoprotein (LDL) antibodies are all implicated in the pathogenesis of antiphospholipid syndrome. To investigate whether different autoantibodies or combinations thereof produced distinct effects related to their antigenic specificities, we examined the frequencies of antiphospholipid syndrome (APS)-related features in the presence of different antibodies [aPL, beta 2-GPI, anti-oxidized low density lipoprotein (LDL)] in 125 patients with APS. Median follow-up was 72 months: 58 patients were diagnosed as primary APS and 67 as APS plus systemic lupus erythematosus (SLE). Anticardiolipin antibodies (aCL), anti-beta 2-GPI and anti-oxidized LDL antibodies were determined by ELISA; lupus anticoagulant (LA) by standard coagulometric methods. Univariate analysis showed that patients positive for anti-beta 2-GPI had a higher risk of recurrent thrombotic events (OR = 3.64, 95% CI, p = 0.01) and pregnancy loss (OR = 2.99, 95% CI, p = 0.004). Patients positive for anti-oxidized LDL antibodies had a 2.24-fold increase in the risk of arterial thrombosis (2.24, 95% CI, p = 0.03) and lower risk of thrombocytopenia (OR = 0.41 95% CI, p = 0.04). Patients positive for aCL antibodies had a higher risk of pregnancy loss (OR = 4.62 95% CI, p = 0.001). When these data were tested by multivariate logistic regression, the association between anti-beta 2-GPI and pregnancy loss and the negative association between anti-oxidized LDL antibodies and thrombocytopenia disappeared.  (+info)

(7/19351) Associations of anti-beta2-glycoprotein I autoantibodies with HLA class II alleles in three ethnic groups.

OBJECTIVE: To determine any HLA associations with anti-beta2-glycoprotein I (anti-beta2GPI) antibodies in a large, retrospectively studied, multiethnic group of 262 patients with primary antiphospholipid antibody syndrome (APS), systemic lupus erythematosus (SLE), or another connective tissue disease. METHODS: Anti-beta2GPI antibodies were detected in sera using an enzyme-linked immunosorbent assay. HLA class II alleles (DRB1, DQA1, and DQB1) were determined by DNA oligotyping. RESULTS: The HLA-DQB1*0302 (DQ8) allele, typically carried on HLA-DR4 haplotypes, was associated with anti-beta2GPI when compared with both anti-beta2GPI-negative SLE patients and ethnically matched normal controls, especially in Mexican Americans and, to a lesser extent, in whites. Similarly, when ethnic groups were combined, HLA-DQB1*0302, as well as HLA-DQB1*03 alleles overall (DQB1*0301, *0302, and *0303), were strongly correlated with anti-beta2GPI antibodies. The HLA-DR6 (DR13) haplotype DRB1*1302; DQB1*0604/5 was also significantly increased, primarily in blacks. HLA-DR7 was not significantly increased in any of these 3 ethnic groups, and HLA-DR53 (DRB4*0101) was increased in Mexican Americans only. CONCLUSION: Certain HLA class II haplotypes genetically influence the expression of antibodies to beta2GPI, an important autoimmune response in the APS, but there are variations in HLA associations among different ethnic groups.  (+info)

(8/19351) The latrophilin family: multiply spliced G protein-coupled receptors with differential tissue distribution.

Latrophilin is a brain-specific Ca2+-independent receptor of alpha-latrotoxin, a potent presynaptic neurotoxin. We now report the finding of two novel latrophilin homologues. All three latrophilins are unusual G protein-coupled receptors. They exhibit strong similarities within their lectin, olfactomedin and transmembrane domains but possess variable C-termini. Latrophilins have up to seven sites of alternative splicing; some splice variants contain an altered third cytoplasmic loop or a truncated cytoplasmic tail. Only latrophilin-1 binds alpha-latrotoxin; it is abundant in brain and is present in endocrine cells. Latrophilin-3 is also brain-specific, whereas latrophilin-2 is ubiquitous. Together, latrophilins form a novel family of heterogeneous G protein-coupled receptors with distinct tissue distribution and functions.  (+info)