Contraction to big endothelin-1, big endothelin-2 and big endothelin-3, and endothelin-converting enzyme inhibition in human isolated bronchi. (73/2148)

All three endothelin precursor peptides, i.e. big endothelin-1 (big ET-1), big endothelin-2 (big ET-2) and big endothelin-3 (big ET-3), produced contractile responses in human isolated bronchi, demonstrating the presence of functional endothelin-converting enzyme (ECE) in this tissue. The maximal contractile responses were equal to 108.4+/-8.0% (0.1 microM big ET-1; n=4), 85.2+/-11.8% (0.1 microM big ET-2; n=7) and 43.0+/-7.2% (0.1 microM big ET-3; n=5) of the reference response to acetylcholine (1 mM). The response to big ET-1 (0.1 microM), but not endothelin-1 (ET-1, 0.1 microM), was diminished after overnight storage of the tissue at 4 degrees C, demonstrating instability of the enzyme. The responses to all three big-endothelins were significantly inhibited, by the ECE inhibitors CGS 26393 and CGS 26303, in a concentration-related manner. The responses to the mature peptides ET-1, endothelin-2 (ET-2), and endothelin-3 (ET-3) were unaffected by CGS 26393 and CGS 26303. Phosphoramidon (10 microM) also produced an inhibition of the response to big ET-1 that was equivalent to that produced by CGS 26393 (10 microM). Combination of CGS 26393 (10 microM) and phosphoramidon (10 microM) did not produce an additive inhibition. These results demonstrate the presence of functional ECE for all three big endothelins in human bronchus and inhibition of the enzyme by newly developed orally active ECE inhibitors, as well as phosphoramidon. British Journal of Pharmacology (2000) 129, 170 - 176  (+info)

Analysis of the fine specificity of Tn-binding proteins using synthetic glycopeptide epitopes and a biosensor based on surface plasmon resonance spectroscopy. (74/2148)

Using synthetic Tn (GalNAc-O-Ser/Thr) glycopeptide models and a biosensor based on surface plasmon resonance spectroscopy we have determined that isolectin B4 from Vicia villosa (VVLB4) binds to one Tn determinant whereas the anti-Tn monoclonal antibodies 83D4 and MLS128 require at least two Tn residues for recognition. When an unglycosylated amino acid is introduced between the Tn residues, both antibodies do not bind. MLS128 affinity was higher on a glycopeptide with three consecutive Tn residues. These results indicate that Tn residues organized in clusters are essential for the binding of these antibodies and indicate a different Tn recognition pattern for VVLB4.  (+info)

Structural analysis of murine zona pellucida glycans. Evidence for the expression of core 2-type O-glycans and the Sd(a) antigen. (75/2148)

Murine sperm initiate fertilization by binding to specific oligosaccharides linked to the zona pellucida, the specialized matrix coating the egg. Biophysical analyses have revealed the presence of both high mannose and complex-type N-glycans in murine zona pellucida. The predominant high mannose-type glycan had the composition Man(5)GlcNAc(2), but larger oligosaccharides of this type were also detected. Biantennary, triantennary, and tetraantennary complex-type N-glycans were found to be terminated with the following antennae: Galbeta1-4GlcNAc, NeuAcalpha2-3Galbeta1-4GlcNAc, NeuGcalpha2-3Galbeta1-4GlcNAc, the Sd(a) antigen (NeuAcalpha2-3[GalNAcbeta1-4]Galbeta1-4GlcNAc, NeuGcalpha2-3[GalNAcbeta1-4]Galbeta1-4GlcNAc), and terminal GlcNAc. Polylactosamine-type sequence was also detected on a subset of the antennae. Analysis of the O-glycans indicated that the majority were core 2-type (Galbeta1-4GlcNAcbeta1-6[Galbeta1-3]GalNAc). The beta1-6-linked branches attached to these O-glycans were terminated with the same sequences as the N-glycans, except for terminal GlcNAc. Glycans bearing Galbeta1-4GlcNAcbeta1-6 branches have previously been suggested to mediate initial murine gamete binding. Oligosaccharides terminated with GalNAcbeta1-4Gal have been implicated in the secondary binding interaction that occurs following the acrosome reaction. The significant implications of these observations are discussed.  (+info)

A chimeric lectin formed from Bauhinia purpurea lectin and Lens culinaris lectin recognizes a unique carbohydrate structure. (76/2148)

Lectins are carbohydrate-binding proteins widely used in biochemical, immunochemical, and histochemical studies. Bauhinia purpurea lectin (BPA) is a leguminous lectin with an affinity for galactose and lactose. Nine amino acids, DTWPNTEWS, corresponding to the amino acid sequence from aspartic acid-135 to serine-143 in the primary structure of BPA were replaced with the corresponding amino acid residues from the mannose-binding Lens culinaris lectin (LCA), and the chimeric lectin obtained was expressed in Escherichia coli cells. The carbohydrate-binding specificity of the recombinant chimeric lectin was investigated in detail by comparing the elution profiles of various glycopeptides and oligosaccharides with defined carbohydate structures from immobilized lectin columns. Glycopeptides carrying three constitutive carbohydrate sequences of Galbeta1-3GalNAc-Ser/Thr and a complex-type biantennary glycopeptide, which show a high affinity for BPA or LCA, were shown to have no affinity for the chimeric lectin. In contrast, hybrid-type and high mannose-type glycopeptides with a Manalpha1-6(Manalpha1-3)Manalpha1-6Man sequence were found to have a moderate affinity for the chimeric lectin. This result demonstrates that a novel type of lectin with a unique carbohydrate-binding specificity can be constructed from BPA by substituting several amino acid residues in its metal-binding region with other amino acid residues. Additional lectin(s) with distinctly different carbohydrate-binding specificities will provide a powerful tool for many studies.  (+info)

Molecular cloning and biochemical characterization of a new mouse testis soluble-zinc-metallopeptidase of the neprilysin family. (77/2148)

Because of their roles in controlling the activity of several bio-active peptides, members of the neprilysin family of zinc metallopeptidases have been identified as putative targets for the design of therapeutic agents. Presently, six members have been reported, these are: neprilysin, endothelin-converting enzyme (ECE)-1 and ECE-2, the Kell blood group protein, PHEX (product of the phosphate-regulating gene with homologies to endopeptidase on the X chromosome) and X-converting enzyme (XCE). In order to identify new members of this important family of peptidases, we designed a reverse transcriptase-PCR strategy based on conserved amino acid sequences of neprilysin, ECE-1 and PHEX. We now report the cloning from mouse testis of a novel neprilysin-like peptidase that we called NL1. NL1 is a glycoprotein that, among the members of the family, shows the strongest sequence identity with neprilysin. However, in contrast with neprilysin and other members of the family which are type II integral membrane proteins, NL1 was secreted when expressed in cultured mammalian cells, likely due to cleavage by a subtilisin-like convertase at a furin-like site located 22 amino acid residues in the C-terminus of the transmembrane domain. The recombinant enzyme exhibited neprilysin-like peptidase activity and was efficiently inhibited by phosphoramidon and thiorphan, two inhibitors of neprilysin. Northern blot analysis and in situ hybridization showed that NL1 mRNA was found predominantly in testis, specifically in round and elongated spermatids. This distribution of NL1 mRNA suggests that it could be involved in sperm formation or other processes related to fertility.  (+info)

Endothelin-2 synthesis is stimulated by the type-1 tumour necrosis factor receptor and cAMP: comparison with endothelin-converting enzyme-1 expression. (78/2148)

ABSTRACT The synthesis of the vasoconstrictor peptide endothelin-2 (ET-2) is dependent on hydrolysis of the biologically inactive intermediate big ET-2 by an endothelin-converting enzyme (ECE). Here, mechanisms inducing ET-2 synthesis have been investigated using the human renal adenocarcinoma cell line (ACHN). Synthesis of ET-2 by ACHN cells was inhibited by phosphoramidon (IC(50( congruent with11 microM). To determine whether ET-2 synthesis occurs in parallel with the metallopeptidase ECE-1, a putative processing peptidase for big ET-2, changes in the levels of their mRNAs were compared by semi-quantitative RT-PCR under conditions causing the upregulation of ET-2 synthesis. Tumour necrosis factor-alpha (TNFalpha), forskolin and a cell-permeable cAMP analogue (dibutyryl cAMP) caused concentration-dependent increases in ET-2 synthesis. Combination of forskolin or dibutyryl cAMP with TNFalpha produced a significantly greater increase in ET-2 production than these agents alone, indicating that adenylate cyclase and TNFalpha induce ET-2 synthesis by separate signalling pathways. Studies using receptor selective TNFalpha mutants, (125(I-TNFalpha binding and TNF receptor mRNA showed that type-1 TNF receptors mediate the ET-2 response to TNFalpha. PreproET-2 mRNA levels were increased by TNFalpha at 1 h and 2 h, but returned to control levels at 4 h. Treatment with forskolin significantly increased preproET-2 mRNA levels after 1 h and 4 h. ACHN cells expressed ECE-1b and ECE-1c, but not the ECE-1a isoform of this peptidase. RT-PCR for the combined isoforms ECE-1b/c/d showed TNFalpha to increase mRNA levels at 2 h and 4 h. Forskolin had no effect on ECE-1b/c/d mRNA levels. Thus, expression of ET-2 and ECE-1b/c/d mRNAs in ACHN cells do not display the co-ordinated regulation observed with typical peptide prohormone processing enzymes and their substrates.  (+info)

The protein translocation channel mediates glycopeptide export across the endoplasmic reticulum membrane. (79/2148)

Peptides and misfolded secretory proteins are transported efficiently from the endoplasmic reticulum (ER) lumen to the cytosol, where the proteins are degraded by proteasomes. Protein export depends on Sec61p, the ribosome-binding core component of the protein translocation channel in the ER membrane. We found that prebinding of ribosomes abolished export of a glycopeptide from yeast microsomes. Deletion of SSH1, which encodes a ribosome-binding Sec61p homologue in the ER, had no effect on glycopeptide export. A collection of cold-sensitive sec61 mutants displayed a variety of phenotypes: two mutants strongly defective in misfolded protein export from the ER, sec61-32 and sec61-41, displayed only minor peptide export defects. Glycopeptide export was severely impaired, however, in several sec61 mutants that were only marginally defective in misfolded protein export. In addition, a mutation in SEC63 strongly reduced peptide export from the ER. ER-luminal ATP was required for both misfolded protein and glycopeptide export. We conclude that the protein translocation channel in the ER membrane mediates glycopeptide transport across the ER membrane.  (+info)

Photoaffinity glycoprobes-a new tool for the identification of lectins. (80/2148)

One of the proposed functions for the carbohydrate structures on glycoconjugates is the transfer of information through interaction with specific lectin receptors. However, the number of elucidated functional lectin-carbohydrate interactions is still relatively small, largely due to the lack of adequate methods to identify lectin activity in complex biological samples. Aiming to solve this problem, we have developed a method based on the novel group of compounds we named glycoprobes. The glycoprobe consists of three vital parts: (1) glycan, (2) digoxin tag, and (3) photoreactive crosslinker. When incubated in dark, oligosaccharide part of the glycoprobe forms a complex with lectin. After illumination, covalent link between the probe and the lectin is formed resulting in a digoxin-tagged lectin. Using antibodies against digoxin, this complex can easily be identified immuno/cytochemically, or by Western blots. To demonstrate the applicability of glycoprobes we have used Man(9)-glycoprobe (containing Man(9)oligosaccharide) and YEE(ahGalNAc)(3)-glycoprobe (containing a synthetic neoglycopeptide with three terminal N-acetyl-galactosamine residues; Lee and Lee, Glycoconjugate J., 1987,4, 317) to identify lectins in bovine serum and rat liver membranes. The simplicity of the method enables its application in routine monitoring of changes in lectin activity during various developmental or pathological processes. An example of GalNAc-binding analysis in human serum is shown.  (+info)