Mechanism of catalysis of the cofactor-independent phosphoglycerate mutase from Bacillus stearothermophilus. Crystal structure of the complex with 2-phosphoglycerate. (9/191)

The structure of the complex between the 2, 3-diphosphoglycerate-independent phosphoglycerate mutase (iPGM) from Bacillus stearothermophilus and its 3-phosphoglycerate substrate has recently been solved, and analysis of this structure allowed formulation of a mechanism for iPGM catalysis. In order to obtain further evidence for this mechanism, we have solved the structure of this iPGM complexed with 2-phosphoglycerate and two Mn(2+) ions at 1. 7-A resolution. The structure consists of two different domains connected by two loops and interacting through a network of hydrogen bonds. This structure is consistent with the proposed mechanism for iPGM catalysis, with the two main steps in catalysis being a phosphatase reaction removing the phosphate from 2- or 3-phosphoglycerate, generating an enzyme-bound phosphoserine intermediate, followed by a phosphotransferase reaction as the phosphate is transferred from the enzyme back to the glycerate moiety. The structure also allowed the assignment of the function of the two domains of the enzyme, one of which participates in the phosphatase reaction and formation of the phosphoserine enzyme intermediate, with the other involved in the phosphotransferase reaction regenerating phosphoglycerate. Significant structural similarity has also been found between the active site of the iPGM domain catalyzing the phosphatase reaction and Escherichia coli alkaline phosphatase.  (+info)

Quantitative determination of metabolic fluxes during coutilization of two carbon sources: comparative analyses with Corynebacterium glutamicum during growth on acetate and/or glucose. (10/191)

Growth of Corynebacterium glutamicum on mixtures of the carbon sources glucose and acetate is shown to be distinct from growth on either substrate alone. The organism showed nondiauxic growth on media containing acetate-glucose mixtures and simultaneously metabolized these substrates. Compared to those for growth on acetate or glucose alone, the consumption rates of the individual substrates were reduced during acetate-glucose cometabolism, resulting in similar total carbon consumption rates for the three conditions. By (13)C-labeling experiments with subsequent nuclear magnetic resonance analyses in combination with metabolite balancing, the in vivo activities for pathways or single enzymes in the central metabolism of C. glutamicum were quantified for growth on acetate, on glucose, and on both carbon sources. The activity of the citric acid cycle was high on acetate, intermediate on acetate plus glucose, and low on glucose, corresponding to in vivo activities of citrate synthase of 413, 219, and 111 nmol. (mg of protein)(-1). min(-1), respectively. The citric acid cycle was replenished by carboxylation of phosphoenolpyruvate (PEP) and/or pyruvate (30 nmol. [mg of protein](-1). min(-1)) during growth on glucose. Although levels of PEP carboxylase and pyruvate carboxylase during growth on acetate were similar to those for growth on glucose, anaplerosis occurred solely by the glyoxylate cycle (99 nmol. [mg of protein](-1). min(-1)). Surprisingly, the anaplerotic function was fulfilled completely by the glyoxylate cycle (50 nmol. [mg of protein](-1). min(-1)) on glucose plus acetate also. Consistent with the predictions deduced from the metabolic flux analyses, a glyoxylate cycle-deficient mutant of C. glutamicum, constructed by targeted deletion of the isocitrate lyase and malate synthase genes, exhibited impaired growth on acetate-glucose mixtures.  (+info)

Era GTPase of Escherichia coli: binding to 16S rRNA and modulation of GTPase activity by RNA and carbohydrates. (11/191)

Era, an essential GTPase, appears to play an important role in the regulation of the cell cycle and protein synthesis of bacteria and mycoplasmas. In this study, native Era, His-tagged Era (His-Era) and glutathione S-transferase (GST)-fusion Era (GST-Era) proteins from Escherichia coli were expressed and purified. It was shown that the GST-Era and His-Era proteins purified by 1-step affinity column chromatographic methods were associated with RNA and exhibited a higher GTPase activity. However, the native Era protein purified by a 3-step column chromatographic method had a much lower GTPase activity and was not associated with RNA which had been removed during purification. Purified GST-Era protein was shown to be present as a high- and a low-molecular-mass forms. The high-molecular-mass form of GST-Era was associated with RNA and exhibited a much higher GTPase activity. Removal of the RNA associated with GST-Era resulted in a significant reduction in the GTPase activity. The RNA associated with GST-Era was shown to be primarily 16S rRNA. A purified native Era protein preparation, when mixed with total cellular RNA, was found to bind to some of the RNA. The native Era protein isolated directly from the cells of a wild-type E. coli strain was also present as a high-molecular-mass form complexed with RNA and RNase treatment converted the high-molecular-mass form into a 32 kDa low-molecular-mass form, a monomer of Era. Furthermore, a C-terminally truncated Era protein, when expressed in E. coli, did not bind RNA. Finally, the GTPase activity of the Era protein free of RNA, but not the Era protein associated with the RNA, was stimulated by acetate and 3-phosphoglycerate. These carbohydrates, however, failed to activate the GTPase activity of the C-terminally truncated Era protein. Thus, the results of this study establish that the C-terminus of Era is essential for the RNA-binding activity and that the RNA and carbohydrates modulate the GTPase activity of Era possibly through a similar mechanism.  (+info)

Metabolic characterization of Lactococcus lactis deficient in lactate dehydrogenase using in vivo 13C-NMR. (12/191)

The metabolism of glucose by nongrowing cells of Lactococcus lactis strain FI7851, constructed from the wild-type L. lactis strain MG1363 by disruption of the lactate dehydrogenase (ldh) gene [Gasson, M.J., Benson, K., Swindel, S. & Griffin, H. (1996) Lait 76, 33-40] was studied in a noninvasive manner by 13C-NMR. The kinetics of the build-up and consumption of the pools of intracellular intermediates mannitol 1-phosphate, fructose 1,6-bisphosphate, 3-phosphoglycerate, and phosphoenolpyruvate as well as the utilization of [1-13C]glucose and formation of products (lactate, acetate, mannitol, ethanol, acetoin, 2,3-butanediol) were monitored in vivo with a time resolution of 30 s. The metabolism of glucose by the parental wild-type strain was also examined for comparison. A clear shift from typical homolactic fermentation (parental strain) to a mixed acid fermentation (lactate dehdydrogenase deficient; LDHd strain) was observed. Furthermore, high levels of mannitol were transiently produced and metabolized once glucose was depleted. Mannitol 1-phosphate accumulated intracellularly up to 76 mM concentration. Mannitol was formed from fructose 6-phosphate by the combined action of mannitol-1-phosphate dehydrogenase and phosphatase. The results show that the formation of mannitol 1-phosphate by the LDHd strain during glucose catabolism is a consequence of impairment in NADH oxidation caused by a highly reduced LDH activity, the transient production of mannitol 1-phosphate serving as a regeneration pathway for NAD+ regeneration. Oxygen availability caused a drastic change in the pattern of intermediates and end-products, reinforcing the key-role of the fulfilment of the redox balance. The flux control coefficients for the step catalysed by mannitol-1-phosphate dehydrogenase were calculated and the implications in the design of metabolic engineering strategies are discussed.  (+info)

Purification and characterization of cytosolic pyruvate kinase from banana fruit. (13/191)

Cytosolic pyruvate kinase (PK(c)) from ripened banana (Musa cavendishii L.) fruits has been purified 543-fold to electrophoretic homogeneity and a final specific activity of 59.7 micromol of pyruvate produced/min per mg of protein. SDS/PAGE and gel-filtration FPLC of the final preparation indicated that this enzyme exists as a 240 kDa homotetramer composed of subunits of 57 kDa. Although the enzyme displayed a pH optimum of 6.9, optimal efficiency in substrate utilization [in terms of V(max)/K(m) for phosphoenolpyruvate (PEP) or ADP] was equivalent at pH 6.9 and 7.5. PK(c) activity was absolutely dependent upon the presence of a bivalent and a univalent cation, with Mg(2+) and K(+) respectively fulfilling this requirement. Hyperbolic saturation kinetics were observed for the binding of PEP, ADP, Mg(2+) and K(+) (K(m) values of 0.098, 0.12, 0.27 and 0.91 mM respectively). Although the enzyme utilized UDP, IDP, GDP and CDP as alternative nucleotides, ADP was the preferred substrate. L-Glutamate and MgATP were the most effective inhibitors, whereas L-aspartate functioned as an activator by reversing the inhibition of PK(c) by L-glutamate. The allosteric features of banana PK(c) are compared with those of banana PEP carboxylase [Law and Plaxton (1995) Biochem. J. 307, 807-816]. A model is presented which highlights the roles of cytosolic pH, MgATP, L-glutamate and L-aspartate in the co-ordinate control of the PEP branchpoint in ripening bananas.  (+info)

NAD malic enzyme and the control of carbohydrate metabolism in potato tubers. (14/191)

Potato (Solanum tuberosum) plants were transformed with a cDNA encoding the 59-kD subunit of the potato tuber NAD-dependent malic enzyme (NADME) in the antisense orientation. Measurements of the maximum catalytic activity of NADME in tubers revealed a range of reductions in the activity of this enzyme down to 40% of wild-type activity. There were no detrimental effects on plant growth or tuber yield. Biochemical analyses of developing tubers indicated that a reduction in NADME activity had no detectable effects on flux through the tricarboxylic acid cycle. However, there was an effect on glycolytic metabolism with significant increases in the concentration of 3-phosphoglycerate and phosphoenolpyruvate. These results suggest that alterations in the levels of intermediates toward the end of the glycolytic pathway may allow respiratory flux to continue at wild-type rates despite the reduction in NADME. There was also a statistically significant negative correlation between NADME activity and tuber starch content, with tubers containing reduced NADME having an increased starch content. The effect on plastid metabolism may result from the observed glycolytic perturbations.  (+info)

Pathway for the synthesis of mannosylglycerate in the hyperthermophilic archaeon Pyrococcus horikoshii. Biochemical and genetic characterization of key enzymes. (15/191)

The biosynthetic pathway for the synthesis of the compatible solute alpha-mannosylglycerate in the hyperthermophilic archaeon Pyrococcus horikoshii is proposed based on the activities of purified recombinant mannosyl-3-phosphoglycerate (MPG) synthase and mannosyl-3-phosphoglycerate phosphatase. The former activity was purified from cell extracts, and the N-terminal sequence was used to identify the encoding gene in the completely sequenced P. horikoshii genome. This gene, designated PH0927, and a gene immediately downstream (PH0926) were cloned and overexpressed in Escherichia coli. The recombinant product of gene PH0927 catalyzed the synthesis of alpha-mannosyl-3-phosphoglycerate (MPG) from GDP-mannose and d-3-phosphoglycerate retaining the configuration about the anomeric carbon, whereas the recombinant gene product of PH0926 catalyzed the dephosphorylation of mannosyl-3-phosphoglycerate to yield the compatible solute alpha-mannosylglycerate. The MPG synthase and the MPG phosphatase were specific for these substrates. Two genes immediately downstream from mpgs and mpgp were identified as a putative bifunctional phosphomannose isomerase/mannose-1-phosphate-guanylyltransferase (PH0925) and as a putative phosphomannose mutase (PH0923). Genes PH0927, PH0926, PH0925, and PH0923 were contained in an operon-like structure, leading to the hypothesis that these genes were under the control of an unknown osmosensing mechanism that would lead to alpha-mannosylglycerate synthesis. Recombinant MPG synthase had a molecular mass of 45,208 Da, a temperature for optimal activity between 90 and 100 degrees C, and a pH optimum between 6.4 and 7.4; the recombinant MPG phosphatase had a molecular mass of 27,958 Da and optimum activity between 95 and 100 degrees C and between pH 5.2 and 6.4. This is the first report of the characterization of MPG synthase and MPG phosphatase and the elucidation of a pathway for the synthesis of mannosylglycerate in an archaeon.  (+info)

Plasmin reduction by phosphoglycerate kinase is a thiol-independent process. (16/191)

Phosphoglycerate kinase (PGK) is secreted by tumor cells and facilitates reduction of disulfide bond(s) in plasmin (Lay, A. J., Jiang, X.-M., Kisker, O., Flynn, E., Underwood, A., Condron, R., and Hogg, P. J. (2000) Nature 408, 869-873). The angiogenesis inhibitor, angiostatin, is cleaved from the reduced plasmin by a combination of serine- and metalloproteinases. The chemistry of protein reductants is typically mediated by a pair of closely spaced Cys residues. There are seven Cys in human PGK, and mutation of all seven to Ala did not appreciably affect plasmin reductase activity, although some of the mutations perturbed the tertiary structure of the protein. Cys-379 and Cys-380 are close to the hinge that links the N- and C-terminal domains of PGK. Alkylation/oxidation of Cys-379 and -380 by four different thiol-reactive compounds reduced plasmin reductase activity to 7--35% of control. Binding of 3-phosphoglycerate and/or MgATP to the N- and C-terminal domains of PGK, respectively, triggers a hinge bending conformational change in the enzyme. Incubation of PGK with 3-phosphoglycerate and/or MgATP ablated plasmin reductase activity, with half-maximal inhibitory effects at approximately 1 mm concentration. In summary, reduction of plasmin by PGK is a thiol-independent process, although either alkylation/oxidation of the fast-reacting Cys near the hinge or hinge bending conformational change in PGK perturbs plasmin reduction by PGK, perhaps by obstructing the interaction of plasmin with PGK or perturbing conformational changes in PGK required for plasmin reduction.  (+info)