Aldolase mediates the association of F-actin with the insulin-responsive glucose transporter GLUT4. (1/77)

To identify potential proteins interacting with the insulin-responsive glucose transporter (GLUT4), we generated fusion proteins of glutathione S-transferase (GST) and the final 30 amino acids from GLUT4 (GST-G4) or GLUT1 (GST-G1). Incubation of these carboxyl-terminal fusion proteins with adipocyte cell extracts revealed a specific interaction of GLUT4 with fructose 1, 6-bisphosphate aldolase. In the presence of aldolase, GST-G4 but not GST-G1 was able to co-pellet with filamentous (F)-actin. This interaction was prevented by incubation with the aldolase substrates, fructose 1,6-bisphosphate or glyceraldehyde 3-phosphate. Immunofluorescence confocal microscopy demonstrated a significant co-localization of aldolase and GLUT4 in intact 3T3L1 adipocytes, which decreased following insulin stimulation. Introduction into permeabilized 3T3L1 adipocytes of fructose 1,6-bisphosphate or the metabolic inhibitor 2-deoxyglucose, two agents that disrupt the interaction between aldolase and actin, inhibited insulin-stimulated GLUT4 exocytosis without affecting GLUT4 endocytosis. Furthermore, microinjection of an aldolase-specific antibody also inhibited insulin-stimulated GLUT4 translocation. These data suggest that aldolase functions as a scaffolding protein for GLUT4 and that glucose metabolism may provide a negative feedback signal for the regulation of glucose transport by insulin.  (+info)

Pyrococcus furiosus glyceraldehyde 3-phosphate oxidoreductase has comparable W(6+/5+) and W(5+/4+) reduction potentials and unusual [4Fe-4S] EPR properties. (2/77)

Pyrococcus furiosus glyceraldehyde 3-phosphate oxidoreductase has been characterized using EPR-monitored redox titrations. Two different W signals were found. W(1)(5+) is an intermediate species in the catalytic cycle, with the midpoint potentials E(m)(W(6+/5+))=-507 mV and E(m)(W(5+/4+))=-491 mV. W(2)(5+) represents an inactivated species with E(m)(W(6+/5+))=-329 mV. The cubane cluster exhibits both S=3/2 and S=1/2 signals with the same midpoint potential: E(m)([4Fe-4S](2+/1+))=-335 mV. The S=1/2 EPR signal is unusual with all g values below 2.0. The titration results combined with catalytic voltammetry data are consistent with electron transfer from glyceraldehyde 3-phosphate first to the tungsten center, then to the cubane cluster and finally to the ferredoxin.  (+info)

Development and characterization of an H2O2-resistant immortal lens epithelial cell line. (3/77)

PURPOSE: To determine how nature would protect lens epithelial cells from H2O2 stress, an immortal murine lens epithelial cell line, alphaTN4-1, was subjected to gradually increasing H2O2 levels over a period of approximately 8 months. The resultant conditioned cells grew normally when exposed daily to 125 microM H2O2, whereas normal cells died within 9 hours. This communication describes changes in the cell biology of the conditioned cells that allowed them to remain viable. The manner in which critical biochemical parameters were affected in both conditioned and normal cells is also reported. METHODS: Conditioned cells were obtained by gradually increasing the concentration of H2O2 over a period of approximately 8 months, introducing an aliquot of H2O2 every 24 hours. A wide spectra of biological parameters were evaluated, including catalase, GSH peroxidase and other antioxidative enzyme activities, cell number and cell viability, non-protein thiol, ATP, transport systems, thymidine incorporation, and DNA cleavage. RESULTS: Surprisingly, the conditioned cells did not degrade the medium H2O2 more rapidly than normal cells. However, analyses of the antioxidative defenses indicated that catalase activity was increased 60-fold and glutathione peroxidase (GSH Px) approximately 2.7-fold. Glucose-6-phosphate dehydrogenase, GSH S-transferase, and GSSG reductase also had increased activity. Using one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis, in situ trypsin digestion and matrix-assisted laser desorption/ionization mass spectrometry, a highly amplified doublet in the conditioned cell preparation was shown to be GSH S-transferase alpha-1 and alpha-2 isomers. Examination of key biochemical parameters indicated that while most such parameters in the conditioned cells showed marked decay in the first hour or so after stress, recovery was then observed and within a few hours, these parameters were back in the normal range. In contrast, damage in the normal cells was not repaired. The damage to DNA was shown to involve Fenton chemistry. In the presence of a metal ion chelator, normal cells survive H2O2 stress. CONCLUSIONS: The overall conclusion from this investigation is that nature has chosen to respond to the H2O2 stress by not only increasing the activity of enzymes degrading H2O2 but also the systems involved in repair, generation of reducing potential, and detoxification. All but one system of those evaluated appears to be permanently modified.  (+info)

Kinetic properties of the glucose-6-phosphate and 6-phosphogluconate dehydrogenases from Corynebacterium glutamicum and their application for predicting pentose phosphate pathway flux in vivo. (4/77)

The glucose-6-phosphate (Glc6P) and 6-phosphogluconate (6PG) dehydrogenases of the amino-acid-producing bacterium Corynebacterium glutamicum were purified to homogeneity and kinetically characterized. The Glc6P dehydrogenase was a heteromultimeric complex, which consists of Zwf and OpcA subunits. The product inhibition pattern of the Glc6P dehydrogenase was consistent with an ordered bi-bi mechanism. The 6PG dehydrogenase was found to operate according to a Theorell-Chance ordered bi-ter mechanism. Both enzymes were inhibited by NADPH and the 6PG dehydrogenase additionally by ATP, fructose 1,6-bisphosphate (Fru1,6P2), D-glyceraldehyde 3-phosphate (Gra3P), erythrose 4-phosphate and ribulose 5-phosphate (Rib5P). The inhibition by NADPH was considered to be most important, with inhibition constants of around 25 microM for both enzymes. Intracellular metabolite concentrations were determined in two isogenic strains of C. glutamicum with plasmid-encoded NAD- and NADP-dependent glutamate dehydrogenases. NADP+ and NADPH levels were between 130 microM and 290 microM, which is very much higher than the respective Km and Ki values. The Glc6P concentration was around 500 microM in both strains. The in vivo fluxes through the oxidative part of the pentose phosphate pathway calculated on the basis of intracellular metabolite concentrations and the kinetic constants of the purified enzymes determined in vitro were in agreement with the same fluxes determined by NMR after 13C-labelling. From the derived kinetic model thus validated, it is concluded that the oxidative pentose phosphate pathway in C. glutamicum is mainly regulated by the ratio of NADPH and NADP+ concentrations and the specific enzyme activities of both dehydrogenases.  (+info)

Effects of pH and energy supply on activity and amount of pyruvate formate-lyase in Streptococcus bovis. (5/77)

The enzyme system of pyruvate formate-lyase (PFL) in Streptococcus bovis was investigated by isolating PFL and PFL-activating enzyme (PFL-AE) from S. bovis, flavodoxin from Escherichia coli, and chloroplasts from spinach. In this study, the PFL and PFL-AE in S. bovis were found to be similar to those in E. coli, suggesting that the activating mechanisms are similar. The optimal pH of S. bovis PFL was 7.5, which is in contrast to the optimal pH of S. bovis lactate dehydrogenase, which is 5.5. The apparent K(m) of S. bovis PFL was 2 mM. The intermediates of glycolysis, dihydroxyacetone phosphate (DHAP) and D-glyceraldehyde-3-phosphate (GAP), were shown to inhibit PFL activity. The concentrations of intracellular DHAP and GAP in S. bovis ranged from 1.9 mM to less than 0.1 mM and from 0.6 mM to less than 0.05 mM, respectively, depending on the energy supply. The wide variations in DHAP and GAP levels indicated that PFL activity is allosterically regulated by these triose phosphates in vivo. The amount of PFL protein, as determined by Western blot analysis with polyclonal antibody, changed in parallel with the level of pfl-mRNA, responding to the culture conditions. These observations confirm that PFL synthesis is regulated at the transcriptional level and support the hypothesis that S. bovis shifts the fermentation pathway from acetate, formate, and ethanol production to lactate production when the pH is low and when excess energy is supplied.  (+info)

Brownian dynamics simulations of aldolase binding glyceraldehyde 3-phosphate dehydrogenase and the possibility of substrate channeling. (6/77)

Brownian dynamics (BD) simulations test for channeling of the substrate, glyceraldehyde 3-phosphate (GAP), as it passes between the enzymes fructose-1,6-bisphosphate aldolase (aldolase) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH). First, BD simulations determined the favorable complexes between aldolase and GAPDH; two adjacent subunits of GAPDH form salt bridges with two subunits of aldolase. These intermolecular contacts provide a strong electrostatic interaction between the enzymes. Second, BD simulates GAP moving out of the active site of the A or D aldolase subunit and entering any of the four active sites of GAPDH. The efficiency of transfer is determined as the relative number of BD trajectories that reached any active site of GAPDH. The distribution functions of the transfer time were calculated based on the duration of successful trajectories. BD simulations of the GAP binding from solution to aldolase/GAPDH complex were compared to the channeling simulations. The efficiency of transfer of GAP within an aldolase/GAPDH complex was 2 to 3% compared to 1.3% when GAP was binding to GAPDH from solution. There is a preference for GAP channeling between aldolase and GAPDH when compared to binding from solution. However, this preference is not large enough to be considered as a theoretical proof of channeling between these proteins.  (+info)

Subunit interface mutation disrupting an aromatic cluster in Plasmodium falciparum triosephosphate isomerase: effect on dimer stability. (7/77)

A mutation at the dimer interface of Plasmodium falciparum triosephosphate isomerase (PfTIM) was created by mutating a tyrosine residue at position 74, at the subunit interface, to glycine. Tyr74 is a critical residue, forming a part of an aromatic cluster at the interface. The resultant mutant, Y74G, was found to have considerably reduced stability compared with the wild-type protein (TIMWT). The mutant was found to be much less stable to denaturing agents such as urea and guanidinium chloride. Fluorescence and circular dichroism studies revealed that the Y74G mutant and TIMWT have similar spectroscopic properties, suggestive of similar folded structures. Further, the Y74G mutant also exhibited a concentration-dependent loss of enzymatic activity over the range 0.1-10 microM. In contrast, the wild-type enzyme did not show a concentration dependence of activity in this range. Fluorescence quenching of intrinsic tryptophan emission was much more efficient in case of Y74G than TIMWT, suggestive of greater exposure of Trp11, which lies adjacent to the dimer interface. Analytical gel filtration studies revealed that in Y74G, monomeric and dimeric species are in dynamic equilibrium, with the former predominating at low protein concentration. Spectroscopic studies established that the monomeric form of the mutant is largely folded. Low concentrations of urea also drive the equilibrium towards the monomeric form. These studies suggest that the replacement of tyrosine with a small residue at the interface of triosephosphate isomerase weakens the subunit-subunit interactions, giving rise to structured, but enzymatically inactive, monomers at low protein concentration.  (+info)

Starch synthesis in potato tubers is regulated by post-translational redox modification of ADP-glucose pyrophosphorylase: a novel regulatory mechanism linking starch synthesis to the sucrose supply. (8/77)

Transcriptional and allosteric regulation of ADP-Glc pyrophosphorylase (AGPase) plays a major role in the regulation of starch synthesis. Analysis of the response after detachment of growing potato tubers from the mother plant revealed that this concept requires extension. Starch synthesis was inhibited within 24 h of tuber detachment, even though the catalytic subunit of AGPase (AGPB) and overall AGPase activity remained high, the substrates ATP and Glc-1-P increased, and the glycerate-3-phosphate/inorganic orthophosphate (the allosteric activator and inhibitor, respectively) ratio increased. This inhibition was abolished in transformants in which a bacterial AGPase replaced the potato AGPase. Measurements of the subcellular levels of each metabolite between Suc and starch established AGPase as the only step whose substrates increase and mass action ratio decreases after detachment of wild-type tubers. Separation of extracts on nonreducing SDS gels revealed that AGPB is present as a mixture of monomers and dimers in growing tubers and becomes dimerized completely in detached tubers. Dimerization led to inactivation of the enzyme as a result of a marked decrease of the substrate affinity and sensitivity to allosteric effectors. Dimerization could be reversed and AGPase reactivated in vitro by incubating extracts with DTT. Incubation of tuber slices with DTT or high Suc levels reduced dimerization, increased AGPase activation, and stimulated starch synthesis in vivo. In intact tubers, the Suc content correlated strongly with AGPase activation across a range of treatments, including tuber detachment, aging of the mother plant, heterologous overexpression of Suc phosphorylase, and antisense inhibition of endogenous AGPase activity. Furthermore, activation of AGPase resulted in a stimulation of starch synthesis and decreased levels of glycolytic intermediates.  (+info)