Involvement of protein kinase Cdelta in contact-dependent inhibition of growth in human and murine fibroblasts. (65/776)

There is evidence that protein kinase C delta (PKCdelta) is a tumor suppressor, although its physiological role has not been elucidated so far. Since important anti-proliferative signals are mediated by cell-cell contacts we studied whether PKCdelta is involved in contact-dependent inhibition of growth in human (FH109) and murine (NIH3T3) fibroblasts. Cell-cell contacts were imitated by the addition of glutardialdehyde-fixed cells to sparsely seeded fibroblasts. Downregulation of the PKC isoforms alpha, delta, epsilon, and mu after prolonged treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA, 0.1 microM) resulted in a significant release from contact-inhibition in FH109 cells. Bryostatin 1 selectively prevented TPA-induced PKCdelta-downregulation and reversed TPA-induced release from contact-inhibition arguing for a role of PKCdelta in contact-inhibition. In accordance, the PKCdelta specific inhibitor Rottlerin (1 microM) totally abolished contact-inhibition. Interestingly, immunofluorescence revealed a rapid translocation of PKCdelta to the nucleus when cultures reached confluence with a peak in early-mid G1 phase. Nuclear translocation of PKCdelta in response to cell-cell contacts could also be demonstrated after subcellular fractionation by Western blotting and by measuring PKCdelta-activity after immunoprecipitation. Transient transfection of NIH3T3 cells with a dominant negative mutant of PKCdelta induced a transformed phenotype. We conclude that PKCdelta is involved in contact-dependent inhibition of growth.  (+info)

Organization of photosystem I polypeptides examined by chemical cross-linking. (66/776)

Photosystem I from the cyanobacterium Synechocystis sp. PCC 6803 was examined using the chemical cross-linkers glutaraldehyde and N-ethyl-1-3-[3-(dimethylamino)propyl]carbodiimide to investigate the organization of the polypeptide subunits. Thylakoid membranes and photosystem I, which was isolated by Triton X-100 fractionation, were treated with cross-linking reagents and were resolved using a Tricine/urea low-molecular-weight resolution gel system. Subunit-specific antibodies and western blotting analysis were used to identify the components of cross-linked species. These analyses identified glutaraldehyde-dependent cross-linking products composed of small amounts of PsaD and PsaC, PsaC and PsaE, and PsaE and PsaF. The novel cross-link between PsaE and PsaF was also observed following treatment with N-ethyl-1-3-[3-(dimethylamino)propyl]carbodiimide. These cross-linking results suggest a structural interaction between PsaE and PsaF and predict a transmembrane topology for PsaF.  (+info)

Inhibition of the B. subtilis regulatory protein TRAP by the TRAP-inhibitory protein, AT. (67/776)

An anti-TRAP (AT) protein, a factor of previously unknown function, conveys the metabolic signal that the cellular transfer RNA for tryptophan (tRNATrp) is predominantly uncharged. Expression of the operon encoding AT is induced by uncharged tRNATrp. AT associates with TRAP, the trp operon attenuation protein, and inhibits its binding to its target RNA sequences. This relieves TRAP-mediated transcription termination and translation inhibition, increasing the rate of tryptophan biosynthesis. AT binds to TRAP primarily when it is in the tryptophan-activated state. The 53-residue AT polypeptide is homologous to the zinc-binding domain of DnaJ. The mechanisms regulating tryptophan biosynthesis in Bacillus subtilis differ from those used by Escherichia coli.  (+info)

Apocrine secretion in the terminal bronchiole of mouse lung. (68/776)

The question of the existence of apocrine secretory activity by the Clara cells of the mouse lung terminal bronchiole has been investigated in depth. The overall superiority of 1--2 micrometer plastic sections for light microscopy was demonstrated. The preservation of the anatomy of the terminal bronchiole was shown to be adversely affected by slow killing methods, by post mortem delays before fixation, and by the instillation of fluids via the trachea. The use of collapsed lungs removed from rapidly killed animals is probably the best method for the study of the small bronchioles of the lung. Apocrine secretion takes place as originally described by Clara in 1937. The reason why the phenomenon has received so little attention in the literature is probably because the tracheal or vascular perfusion of fixative, and delays before fixation, all prevent apocrine droplets from being preserved.  (+info)

The efficacy of chemical agents in cleaning and disinfection programs. (69/776)

BACKGROUND: Due to the growing number of outbreaks of infection in hospital nurseries, it becomes essential to set up a sanitation program that indicates that the appropriate chemical agent was chosen for application in the most effective way. METHOD: For the purpose of evaluating the efficacy of a chemical agent, the minimum inhibitory concentration (MIC) was reached by the classic method of successive broth dilutions. The reference bacteria utilized were Bacillus subtilis var. globigii ATCC 9372, Bacillus stearothermophilus ATCC 7953, Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923. The strains of Enterobacter cloacae IAL 1976 (Adolfo Lutz Institute), Serratia marcescens IAL 1478 and Acinetobactev calcoaceticus IAL 124 (ATCC 19606), were isolated from material collected from babies involved in outbreaks of infection in hospital nurseries. RESULTS: The MIC intervals, which reduced bacteria populations over 08 log10, were: 59 to 156 mg/L of quaternarium ammonium compounds (QACs); 63 to 10000 mg/L of chlorhexidine digluconate; 1375 to 3250 mg/L of glutaraldehyde; 39 to 246 mg/L of formaldehyde; 43750 to 87500 mg/L of isopropanol or ethanol; 1250 to 6250 mg/L of iodine in polyvinyl-pyrolidone complexes, 150 to 4491 mg/L of chlorine-releasing-agents (CRAs); 469 to 2500 mg/L of hydrogen peroxide; and, 2310 to 18500 mg/L of peracetic acid. CONCLUSIONS: Chlorhexidine showed non inhibitory activity over germinating spores. A. calcoaceticus, was observed to show resistance to the majority of the agents tested, followed by E. cloacae and S. marcescens.  (+info)

Thapsigargin and dimethyl sulfoxide activate medium P(i)<-->HOH oxygen exchange catalyzed by sarcoplasmic reticulum Ca2+-ATPase. (70/776)

Thapsigargin is a potent inhibitor of sarcoplasmic reticulum Ca(2+)-ATPase. It binds the Ca(2+)-free E2 conformation in the picomolar range, supposedly resulting in a largely catalytically inactive species. We now find that thapsigargin has little effect on medium P(i) <--> HOH oxygen exchange and that this activity is greatly stimulated (up to 30-fold) in the presence of 30% (v/v) Me(2)SO. Assuming a simple two-step mechanism, we have evaluated the effect of thapsigargin and Me(2)SO on the four rate constants governing the reaction of P(i) with Ca(2+)-ATPase. The principal effect of thapsigargin alone is to stimulate EP hydrolysis (k(-2)), whereas that of Me(2)SO is to greatly retard P(i) dissociation (k(-1)), accounting for its well known effect on increasing the apparent affinity for P(i). These effects persist when the agents are used in combination and substantially account for the activated oxygen exchange (v(exchange) = k(-2)[EP]). Kinetic simulations show that the overall rate constant for the formation of EP is very fast (approximately 300 s(-1)) when the exchange is maximal. Thapsigargin greatly stabilizes Ca(2+)-ATPase against denaturation in detergent in the absence of Ca(2+), as revealed by glutaraldehyde cross-linking, suggesting that the membrane helices lock together. It seems that the reactions at the phosphorylation site, associated with the activated exchange reaction, are occurring without much movement of the transport site helices, and we suggest that they may be associated solely with an occluded H+ state.  (+info)

Transmission electron microscopy studies of the zona reaction in pig oocytes fertilized in vivo and in vitro. (71/776)

The aim of this study was to determine the ultrastructure of cross-sectioned zonae pellucidae of in vitro-matured and ovulated pig oocytes before or after sperm penetration in vitro and in vivo, respectively. The in vitro and in vivo (ovulated) oocytes and zygotes (fertilized in vitro and in vivo) were fixed with glutaraldehyde either directly or after pretreatment with ruthenium red and saponin, processed and then examined using transmission electron microscopy. The thickness of the zona pellucida, as measured on the section of the specimens with largest diameter fixed with glutaraldehyde, differed between the in vivo (9.19 +/- 0.47 microm) and in vitro (5.95 +/- 0.51 microm) oocytes. The in vivo oocytes had a rather thick external mesh-like structure, whereas it was much thinner in the in vitro oocytes. This mesh-like external rim was less apparent in both in vivo and in vitro zygotes. Obvious differences in the density of the lattice formed by the fixed zonae pellucidae were visible between the outer and inner (ad-oolemmal) zonae. The outer area always formed a concentrically arrayed fibrillar network, whereas the inner area showed a much more compact, trabecule-like mesh. However, both areas, but particularly the outer network, were much more compacted after the zona reaction. Clear differences in the degree of fibrillar aggregation of the inner zona area were also observed between in vitro and in vivo zygotes, being much higher in the latter. This fibrillar network was more clearly visible in the zygotes pretreated with ruthenium red and saponin; the in vitro zygotes had a fibrillar, radially oriented set of parallel fibrils, whereas it was much more aggregated and trabecule-like in the in vivo zygotes. These results demonstrate that the fine structure of the zona pellucida and the zona reaction at sperm penetration differ between pig oocytes fertilized in vivo and in vitro. Moreover, the ultrastructure of the outer and inner pig zonae pellucidae has a different network organization.  (+info)

Separation of satellite DNA chromatin and main band DNA chromatin from mouse brain. (72/776)

Using restriction endonucleases which preferentially digest mouse main band DNA and leave satellite DNA intact, we have isolated highly purified chromatin fractions containing only mouse satellite or main band DNA. Following the digestion of mouse brain nuclei with EndoR Alu I, main band DNA chromatin is selectively extracted with 10mM Tris, 10mM EDTA. Satellite DNA chromatin is subsequently extracted from the nuclear pellet with Tris-3M urea and further purified on sucrose gradients. Chromatin extracted from digested nuclei with Tris-EDTA contains only main band DNA and has a molecular weight lower than 2 x 10(6). Chromatin fractions obtained from the lower regions of sucrose gradients of the Tris-Urea extracts contain 40--95% satellite DNA and have a molecular weight of 6 to 8 x 10(6). Both the satellite DNA and main band DNA chromatins contain all five histones and have a protein to DNA ratio of 1.3 to 1.  (+info)