Glutaraldehyde-induced colitis. (57/776)

OBJECTIVE: To describe the etiology and clinical course of acute colitis occurring after flexible endoscopy. DESIGN: Chart review. SETTING: A university teaching hospital. PATIENTS: Eight patients who sought assessment of potential colonic disease. INTERVENTION: Colonoscopy in 5 patients and flexible sigmoidoscopy in 3 patients. The indication for endoscopy was screening in 5 patients, cancer surveillance in 2 patients and preoperative evaluation of colon carcinoma in 1 patient. OUTCOME MEASURES: The relation of presenting symptoms to glutaraldehyde exposure, the response to therapy and the need for further therapy. RESULTS: All patients had abdominal pain, mucus diarrhea and rectal bleeding within 48 hours after endoscopy. Most patients reported that the symptoms started within 12 hours of the procedure. All patients were confirmed by sigmoidoscopy to have colitis within 72 hours of the first endoscopic procedure. One patient required hospitalization. In the first 7 patients several stool cultures were negative for Clostridium difficile using the cytotoxin assay by the cell culture method. Four patients had negative cultures for Yersinia, Salmonella and Shigella spp. Three patients were treated with metronidazole initially. Two patients underwent endoscopic biopsy and examination of the biopsy specimen showed fibrinoleukocytic exudate and ischemic type injury. One patient underwent the scheduled sigmoid resection within 48 hours of endoscopy for a Dukes' stage B adenocarcinoma. Concomitant acute ischemic colitis limited to the mucosa and submucosa was noted in the resected specimen. Symptoms resolved in all patients and follow-up endoscopy revealed normal mucosa. CONCLUSION: The entity of glutaraldehyde-induced colitis should be recognized and special attention should be given during instrument cleansing to minimize the risk of its development.  (+info)

A dual role for substrate S-adenosyl-L-methionine in the methylation reaction with bacteriophage T4 Dam DNA-[N6-adenine]-methyltransferase. (58/776)

The fluorescence of 2-aminopurine ((2)A)-substituted duplexes (contained in the GATC target site) was investigated by titration with T4 Dam DNA-(N6-adenine)-methyltransferase. With an unmethylated target ((2)A/A duplex) or its methylated derivative ((2)A/(m)A duplex), T4 Dam produced up to a 50-fold increase in fluorescence, consistent with (2)A being flipped out of the DNA helix. Though neither S-adenosyl-L-homocysteine nor sinefungin had any significant effect, addition of substrate S-adenosyl-L-methionine (AdoMet) sharply reduced the Dam-induced fluorescence with these complexes. In contrast, AdoMet had no effect on the fluorescence increase produced with an (2)A/(2)A double-substituted duplex. Since the (2)A/(m)A duplex cannot be methylated, the AdoMet-induced decrease in fluorescence cannot be due to methylation per se. We propose that T4 Dam alone randomly binds to the asymmetric (2)A/A and (2)A/(m)A duplexes, and that AdoMet induces an allosteric T4 Dam conformational change that promotes reorientation of the enzyme to the strand containing the native base. Thus, AdoMet increases enzyme binding-specificity, in addition to serving as the methyl donor. The results of pre-steady-state methylation kinetics are consistent with this model.  (+info)

Inhibition of beta(2) integrin-mediated leukocyte cell adhesion by leucine-leucine-glycine motif-containing peptides. (59/776)

Many integrins mediate cell attachment to the extracellular matrix by recognizing short tripeptide sequences such as arginine-glycine-aspartic acid and leucine-aspartate-valine. Using phage display, we have now found that the leukocyte-specific beta(2) integrins bind sequences containing a leucine-leucine-glycine (LLG) tripeptide motif. An LLG motif is present on intercellular adhesion molecule (ICAM)-1, the major beta(2) integrin ligand, but also on several matrix proteins, including von Willebrand factor. We developed a novel beta(2) integrin antagonist peptide CPCFLLGCC (called LLG-C4), the structure of which was determined by nuclear magnetic resonance. The LLG-C4 peptide inhibited leukocyte adhesion to ICAM-1, and, interestingly, also to von Willebrand factor. When immobilized on plastic, the LLG-C4 sequence supported the beta(2) integrin-mediated leukocyte adhesion, but not beta(1) or beta(3) integrin-mediated cell adhesion. These results suggest that LLG sequences exposed on ICAM-1 and on von Willebrand factor at sites of vascular injury play a role in the binding of leukocytes, and LLG-C4 and peptidomimetics derived from it could provide a therapeutic approach to inflammatory reactions.  (+info)

Influence of fixation conditions on the performance of glutaraldehyde-treated porcine aortic valves: towards a more scientific basis. (60/776)

To maintain optimum mechanical properties in glutaraldehyde-treated heart-valve tissue the full collagen crimp geometry originally present in the relaxed fresh tissue should be retained. By varying the pressure at which glutaraldehyde fixation is carried out, considerable alterations to this crimp geometry can be achieved. The mechanical stiffness of the preserved tissue is consequently affected, and this in turn has a striking influence on both the opening behaviour of the valve and the degree of strain localisation in the leaflet tissue. A pressure of 100 mmHg eliminated the collagen crimp geometry entirely, and this resulted in the formation of sites of local strain or kinks in the valve leaflets during opening. It is expected that this strain localisation phenomenon will influence the long-term fatigue durability of the treated tissue. Pressures even as low as 4 mmHg result in significant reductions of crimp geometry. Fresh valves should therefore be fixed under a positive head of pressure sufficient only to ensure that the leaflets seal along their coapting free margins. A pressure of less than 1 mmHg was sufficient to achieve this. Leaflets of the commercially available Hancock valve show features similar to valves fixed in glutaraldehyde at about 100 mmHg pressure.  (+info)

Molecular mass, stoichiometry, and assembly of 20 S particles. (61/776)

N-Ethylmaleimide-sensitive factor (NSF), soluble NSF attachment proteins (SNAPs), and SNAP receptor (neuronal SNARE) complexes form 20 S particles with a mass of 788 +/- 122 kDa as judged by scanning transmission electron microscopy. A single NSF hexamer and three alpha SNAP monomers reside within a 20 S particle as determined by quantitative amino acid analysis. In order to study the binding of alpha SNAP and NSF in solution, to define their binding domains, and to specify the role of oligomerization in their interaction, we fused domains of alpha SNAP and NSF to oligomerization modules derived from thrombospondin-1, a trimer, and cartilage oligomeric matrix protein, a pentamer, respectively. Binding studies with these fusion proteins reproduced the interaction of alpha SNAP and NSF N domains in the absence of the hexamerization domain of NSF (D2). Trimeric alpha SNAP (or its C-terminal half) is sufficient to recruit NSF even in the absence of SNARE complexes. Furthermore, pentameric NSF N domains are able to bind alpha SNAP in complex with SNAREs, whereas monomeric N domains do not. Our results demonstrate that the oligomerization of both NSF N domains and alpha SNAP provides a critical driving force for their interaction and the assembly of 20 S particles.  (+info)

Impaired distensibility of the left ventricle after stiffening of the right ventricle. (62/776)

Acute and chronic alterations of right ventricular (RV) wall properties can change left ventricular (LV) performance. We investigated whether and how stiffening of the RV free wall alters LV diastolic distensibility. We used cross-circulated isolated hearts, in which the LV and RV were independently controllable. Stiffness of the RV free wall was altered by intramuscular injections of glutaraldehyde into the RV free wall after right coronary artery ligation. We measured circumferential and longitudinal regional lengths in the septum and LV free wall. During data acquisition, RV volume was held constant. After the RV free wall was stiffened by glutaraldehyde, the LV diastolic pressure-volume relation shifted upward and became steeper. Importantly, stiffening of the RV free wall increased the diastolic regional area in the septum and LV free wall under constant LV volume. The augmented regional dimensions may result in enhanced regional tension under constant LV volume and may be related to the observed increase in LV diastolic intracavitary pressure. The impaired LV diastolic distensibility by stiffening of the RV free wall may be at least partly explained by myocardial stretch, probably due to LV deformation.  (+info)

Crystal structure of alpha-momorcharin in 80% acetonitrile--water mixture. (63/776)

Crystals of alpha-momorcharin (MMC) were cross-linked and soaked in an 80% acetonitrile--water mixture and X-ray data were collected to 2.2 A resolution. MMC is a ribosome-inactivating protein with a sugar chain on Asn-227. In previous studies, the whole conformation of the sugar chain could not be obtained in the aqueous system. Here the structure of MMC in a low water system is shown to be similar to the native one, but the sugar chain on Asn-227 is defined by the electron density map. Several oxygen atoms of the oligosaccharide formed intramolecular hydrogen bonds to the protein moiety. The conformation of the residues in the active center is similar to that in the aqueous system. Our results show conformational alteration of the tetrasaccharide of MMC in organic media. They indicate that the oligosaccharides are more rigid in organic solvents. X-ray determination in organic media may be used to solve some structures of oligosaccharides linked to glycoproteins.  (+info)

Isolation of bovine plasma albumin by liquid chromatography and its polymerization for use in immunohematology. (64/776)

The aim of the method described here is to remove hemoglobin, the major contaminant in the bovine plasma obtained from slaughterhouses, by adding a mixture of 19% cold ethanol and 0.6% chloroform, followed by fibrinogen and globulin precipitation by the Cohn method and nonspecific hemagglutinin by thermocoagulation. The experimental volume of bovine plasma was 2,000 ml per batch. Final purification was performed by liquid chromatography using the ion-exchange gel DEAE-Sepharose FF. The bovine albumin thus obtained presented > or =99% purity, a yield of 25.0 +/- 1.2 g/l plasma and >71.5% recovery. N-acetyl-DL-tryptophan (0.04 mmol/g protein) and sodium caprylate (0.04 mmol/g protein) were used as stabilizers and the final concentration of albumin was adjusted to 22.0% (w/v), pH 7.2 to 7.3. Viral inactivation was performed by pasteurization for 10 h at 60 degrees C. The bovine albumin for the hemagglutination tests used in immunohematology was submitted to chemical treatment with 0.06% (w/v) glutaraldehyde and 0.1% (w/v) formaldehyde at 37 degrees C for 12 h to obtain polymerization. A change in molecular distribution was observed after this treatment, with average contents of 56.0% monomers, 23.6% dimers, 12.2% trimers and 8.2% polymers. The tests performed demonstrated that this polymerized albumin enhances the agglutination of Rho(D)-positive red cells by anti-Rho(D) serum, permitting and improving visualization of the results.  (+info)