Effect of manganese(ous) and sulfate on activity of human placental glucose 6-phosphate-dependent form of glycogen synthase. (41/551)

The human placental glucose-6-P-dependent form of glycogen synthase, in the absence of glucose-6-P, can be activated by MnSO4. Separately, Mn2+ and SO4(2-) have no significant effect. In the presence of glucose-6-P, Mn2+ activates the enzyme, but SO4(2-) inhibits; MnSO4 synergetically increases the enzyme activity. Mn2+ reduces the Ka for glucose-6-P to one-tenth of the control value; SO4(2-) increases the Ka 5-fold; however, MnSO4 has no effect on Ka. MnSO4, like glucose-6-P, increases the Vmax of the enzyme in the presence of its substrate, UDP-glucose; it slightly increases the Km for UDP-glucose. In the presence of glucose-6-P, Mn2+ increases and SO4(2-) decreases the Vmax of the enzyme, but neither has an effect on the Km for UDP-glucose. At physiological concentrations of UDP-glucose and glucose-6-P, either Mn2+ or MnSO4 at concentrations less than 1 mM increases the enzyme activity as much as 8 mM glucose-6-P does. At physiological concentrations of UDP-glucose and glucose-6-P, Mn2+ or MnSO4 reverses the inhibition of the enzyme by ATP.  (+info)

Permeability of rat liver microsomal membrane to glucose 6-phosphate. (42/551)

Light-scattering measurements of osmotically induced changes in the size of rat liver microsomal vesicles pre-equilibrated in a low-osmolality buffer revealed the following. (1) The increase in extravesicular osmolality by addition of glucose 6-phosphate or mannose 6-phosphate (25 mM each) caused a rapid shrinking of microsomal vesicles. After shrinkage, a rapid swelling phase (t1/2 approx. 22 s) was present with glucose 6-phosphate but absent with mannose 6-phosphate, indicating that the former had entered microsomal vesicles, but the latter had not. (2) Almost identical results were obtained in the absence of any glucose 6-phosphate hydrolysis, i.e. with microsomes pre-treated with 100 microM-vanadate. (3) The anion-channel blocker 4,4'-di-isothiocyanostilbene-2,2'-disulphonic acid (DIDS) suppressed the glucose 6-phosphate-induced swelling phase. (4) The swelling phase was more prolonged as the glucose 6-phosphate concentration increased (t1/2 = 16 +/- 3, 22 +/- 3 and 35 +/- 4 s with 25 mM, 37.5 mM- and 50 mM-glucose 6-phosphate respectively). The behaviour of glucose-6-phosphatase activity of intact and disrupted microsomes measured in the presence of high concentrations (less than 30 mM) of substrate also indicated the saturation of the glucose 6-phosphate permeation system by extravesicular concentrations of glucose 6-phosphate higher than 20-30 mM. Additional experiments showed that vanadate-treated microsomes pre-equilibrated with 0.1 mM- and 1.0 mM-glucose 6-phosphate (and [1-14C]glucose 6-phosphate as a tracer) rapidly (t1/2 less than 20 s) released [1-14C]glucose 6-phosphate when diluted in a glucose 6-phosphate-free medium. The efflux of [1-14C]glucose 6-phosphate was largely prevented by DIDS, allowing an evaluation of the intravesicular space of glucose 6-phosphate of approx. 1.0 microliter/mg of microsomal protein.  (+info)

Synthetic reaction of Cellvibrio gilvus cellobiose phosphorylase. (43/551)

The synthetic reactions of the cellobiose phosphorylase from Cellvibrio gilvus were investigated in detail. It was found that, besides D-glucose, some sugars having substitution or deletion of the hydroxyl group at C2 or C6 of the D-glucose molecule could serve as a glucosyl acceptor, though less effectively than D-glucose. The enzyme showed higher activity with beta-D-glucose than with the alpha-anomer as an acceptor. This result indicates that it recognizes the anomeric hydroxyl group not involved directly in the reaction. beta-D-Cellobiose was also phosphorolyzed faster than the alpha-anomer. Substrate inhibition was observed with D-glucose, 6-deoxy-D-glucose, or D-glucosamine as an acceptor, with D-glucose being most inhibiting. This inhibition was studied in detail and it was found that D-glucose competes with alpha-D-glucose-1-phosphate for its binding site. A model of competitive substrate inhibition was proposed, and the experimental data fit well to the theoretical values that were calculated in accordance with this model.  (+info)

Glycation (non-enzymic glycosylation) inactivates glutathione reductase. (44/551)

Non-enzymic binding of sugars to proteins (glycation) is a common biological phenomenon that is increased in diabetes. Most work has been directed towards structural proteins which may be present for many years and would continue to accumulate sugar residues. As glycation is a non-specific reaction, other proteins such as enzymes will also be susceptible to glycation and could well display altered activity. We investigated the effect of various sugars whose concentrations increase in diabetes in insulin-independent tissues on glutathione reductase, an enzyme that maintains the GSH level in cells. Glucose, glucose 6-phosphate and fructose all displayed a time-dependent inhibition of glutathione reductase activity, suggesting that these sugars glycate this enzyme. Aspirin gave some protection against the loss of activity induced by glucose.  (+info)

Dissociated effects of 2-deoxy-D-glucose on D-[2-3H]glucose and D-[5-3H]glucose conversion into 3HOH in rat erythrocytes. (45/551)

When rat erythrocytes were preincubated with 2-deoxy-D-glucose, the generation of both 3H-labelled acidic metabolites and 3HOH from D-[5-3H]glucose, the total production of L-lactate, and the generation of 14CO2, 14C-labelled acidic metabolites and 14C-labelled lactate from D-[1-14C]glucose or D-[U-14C]glucose were all lower than in erythrocytes preincubated in the absence of a hexose or in the presence of 3-O-methyl-D-glucose. However, preincubation with 2-deoxy-D-glucose failed to decrease the generation of 3H-labelled acidic metabolites and L-[3-3H]lactate from D-[2-3H]glucose, while decreasing the production of 3HOH more severely from D-[2-3H]glucose than from D-[5-3H]glucose. This may be attributable not solely to inhibition of D-glucose phosphorylation by 2-deoxy-D-glucose and 2-deoxy-D-glucose 6-phosphate, but also to inhibition by 2-deoxy-D-glucose 6-phosphate of hexose 6-phosphate interconversion in the reaction catalysed by phosphoglucoisomerase, as also observed with the purified enzyme. The generation of 3HOH from D-[2-3H]glucose should therefore be considered as a tool to assess the efficiency of interconversion of hexose 6-phosphates in the reaction catalysed by phosphoglucoisomerase, rather than to estimate D-glucose phosphorylation rate.  (+info)

Identification and characterization of a critical region in the glycogen synthase from Escherichia coli. (46/551)

The cysteine-specific reagent 5,5'-dithiobis(2-nitrobenzoic acid) inactivates the Escherichia coli glycogen synthase (Holmes, E., and Preiss, J. (1982) Arch. Biochem. Biophys. 216, 736-740). To find the responsible residue, all cysteines, Cys(7), Cys(379), and Cys(408), were substituted combinatorially by Ser. 5,5'-Dithiobis(2-nitrobenzoic acid) modified and inactivated the enzyme if and only if Cys(379) was present and it was prevented by the substrate ADP-glucose (ADP-Glc). Mutations C379S and C379A increased the S(0.5) for ADP-Glc 40- and 77-fold, whereas the specific activity was decreased 5.8- and 4.3-fold, respectively. Studies of inhibition by glucose 1-phosphate and AMP indicated that Cys(379) was involved in the interaction of the enzyme with the phosphoglucose moiety of ADP-Glc. Other mutations, C379T, C379D, and C379L, indicated that this site is intolerant for bulkier side chains. Because Cys(379) is in a conserved region, other residues were scanned by mutagenesis. Replacement of Glu(377) by Ala and Gln decreased V(max) more than 10,000-fold without affecting the apparent affinity for ADP-Glc and glycogen binding. Mutation of Glu(377) by Asp decreased V(max) only 57-fold indicating that the negative charge of Glu(377) is essential for catalysis. The activity of the mutation E377C, on an enzyme form without other Cys, was chemically restored by carboxymethylation. Other conserved residues in the region, Ser(374) and Gln(383), were analyzed by mutagenesis but found not essential. Comparison with the crystal structure of other glycosyltransferases suggests that this conserved region is a loop that is part of the active site. The results of this work indicate that this region is critical for catalysis and substrate binding.  (+info)

Structural basis of diverse substrate recognition by the enzyme PMM/PGM from P. aeruginosa. (47/551)

Enzyme-substrate complexes of phosphomannomutase/phosphoglucomutase (PMM/PGM) reveal the structural basis of the enzyme's ability to use four different substrates in catalysis. High-resolution structures with glucose 1-phosphate, glucose 6-phosphate, mannose 1-phosphate, and mannose 6-phosphate show that the position of the phosphate group of each substrate is held constant by a conserved network of hydrogen bonds. This produces two distinct, and mutually exclusive, binding orientations for the sugar rings of the 1-phospho and 6-phospho sugars. Specific binding of both orientations is accomplished by key contacts with the O3 and O4 hydroxyls of the sugar, which must occupy equatorial positions. Dual recognition of glucose and mannose phosphosugars uses a combination of specific protein contacts and nonspecific solvent contacts. The ability of PMM/PGM to accommodate these four diverse substrates in a single active site is consistent with its highly reversible phosphoryl transfer reaction and allows it to function in multiple biosynthetic pathways in P. aeruginosa.  (+info)

Two mechanisms for growth inhibition by elevated transport of sugar phosphates in Escherichia coli. (48/551)

The Escherichia coli uhp T gene encodes an active transport system for sugar phosphates. When the uhp T gene was carried on a multicopy plasmid, amplified levels of transport activity occurred, and growth of these strains was inhibited upon the addition of various sugar phosphates. Two different mechanisms for this growth inhibition were distinguished. Exposure to glucose-6-phosphate, fructose-6-phosphate or mannose-6-phosphate, which enter directly into the glycolytic pathway, resulted in cessation of growth and substantial loss of viability. Cell killing was correlated with the production of the toxic metabolite, methylglyoxal. In contrast, addition of 2-deoxyglucose-6-phosphate, galactose-6-phosphate, glucosamine-6-phosphate or arabinose-5-phosphate, which do not directly enter the glycolytic pathway, resulted in growth inhibition without engendering methylglyoxal production or cell death. Inhibition of growth could result from excessive accumulation of organophosphates in the cell or depletion of inorganic phosphate pools as a result of the sugar-P/Pi exchange process catalysed by UhpT. The phosphate-dependent uptake of glycerol-3-phosphate by the GlpT antiporter was strongly inhibited under conditions of elevated sugar-phosphate transport. There are thus two separate toxic effects of elevated sugar-phosphate transport, one of which was lethal and related to increased flux through glycolysis. It is likely that the control of uhpT transcription by catabolite repression exists to limit the level of UhpT transport activity and thereby prevent the toxic events that result from elevated uptake of its substrates.  (+info)