Prolactin induction of insulin gene expression: the roles of glucose and glucose transporter-2. (9/340)

Previous studies have shown that lactogenic hormones stimulate beta-cell proliferation and insulin production in pancreatic islets. However, all such studies have been conducted in cells incubated in medium containing glucose. Since glucose independently stimulates beta-cell replication and insulin production, it is unclear whether the effects of prolactin (PRL) on insulin gene expression are exerted directly or through the uptake and/or metabolism of glucose. We examined the interactions between glucose and PRL in the regulation of insulin gene transcription and the expression of glucose transporter-2 (glut-2) and glucokinase mRNAs in rat insulinoma (INS-1) cells. In the presence of 5.5 mM glucose, the levels of preproinsulin and glut-2 mRNAs in PRL-treated cells exceeded the levels in control cells (1.7-fold, P<0.05 and 2-fold, P<0.05 respectively). The maximal effects of PRL were noted at 24-48 h of incubation. PRL had no effect on the levels of glucokinase mRNA. The higher levels of glut-2 mRNA were accompanied by an increase in the number of cellular glucose transporters, as demonstrated by a 1. 4- to 2.4-fold increase in the uptake of 2-deoxy-d-[(3)H]glucose in PRL-treated INS-1 cells (P<0.001). These findings suggested that the insulinotropic effect of PRL is mediated, in part, by induction of glucose transport and/or glucose metabolism. Nevertheless, even in the absence of glucose, PRL stimulated increases in the levels of preproinsulin mRNA (3.4-fold higher than controls, P<0.0001) and glut-2 mRNA (2-fold higher than controls, P<0.01). These observations suggested that PRL exerts glucose-independent as well as glucose-dependent effects on insulin gene expression. Support for this hypothesis was provided by studies of insulin gene transcription using INS-1 cells transfected with a plasmid containing the rat insulin 1 promoter linked to a luciferase reporter gene. Glucose and PRL, alone and in combination, stimulated increases in cellular luciferase activity. The relative potencies of glucose (5.5 mM) alone, PRL alone, and glucose plus PRL in combination were 2.2 (P<0.001), 3.4 (P<0.01), and 7.9 (P<0.0001) respectively. Our findings suggest that glucose and PRL act synergistically to induce insulin gene transcription.  (+info)

Identification of transacting factors responsible for the tissue-specific expression of human glucose transporter type 2 isoform gene. Cooperative role of hepatocyte nuclear factors 1alpha and 3beta. (10/340)

We investigated transacting factors binding to the cis-element important in tissue-specific expression of the human glucose transporter type 2 isoform (GLUT2) gene. By transient transfection assay, we determined that the 227-base pair fragment upstream of the ATG start site contained promoter activity and that the region from +87 to +132 (site C) was responsible for tissue-specific expression. DNase I footprinting and electrophoretic mobility shift assay indicated that site C contained one binding site for hepatocyte nuclear factor 1 (HNF1) and two binding sites for HNF3. The mutations at positions +101 and +103, which are considered to be critical in binding HNF1 and HNF3, resulted in a 53% decrease in promoter activity, whereas the mutation of the proximal HNF3 binding site (+115 and +117) reduced promoter activity by 28%. The mutations of these four sites resulted in marked decrease (70%) in promoter activity as well as diminished bindings of HNF1 and HNF3. A to G mutation, which causes conversion of the HNF1 and HNF3 binding sequence to the NF-Y binding site, resulted in a 22% decrease in promoter activity. We identified that both HNF1 and HNF3 function as transcriptional activators in GLUT2 gene expression. Coexpression of the pGL+74 (+74 to +301) construct with the HNF1alpha and HNF3beta expression vectors in NIH 3T3 cells showed the synergistic effect on GLUT2 promoter activity compared with the expression of HNF1alpha, HNF3beta, or a combination of HNF1beta and HNF3beta. These data suggest that HNF1alpha and HNF3beta may be the most important players in the tissue-specific expression of the human GLUT2 gene.  (+info)

Islet amyloid polypeptide (amylin)-deficient mice develop a more severe form of alloxan-induced diabetes. (11/340)

To examine whether islet amyloid polypeptide (IAPP), other than through amyloid formation, may be of importance in diabetes pathogenesis, IAPP-deficient mice (IAPP(-/-)) were challenged with alloxan (day 0). Diabetes in IAPP(-/-) mice was more severe at day 35, indicated by greater weight loss; glucose levels were higher in alloxan-treated IAPP(-/-) mice, whereas insulin levels were lower, indicating a greater impairment of islet function. Accordingly, glucose levels upon intravenous glucose challenges at days 7 and 35 were consistently higher in alloxan-treated IAPP(-/-) mice. At day 35, insulin mRNA expression, but not beta-cell mass, was lower in untreated IAPP(-/-) mice. Yet, upon alloxan administration, beta-cell mass and numbers of beta-cell-containing islets were significantly more reduced in IAPP(-/-) mice. Furthermore, they displayed exaggerated beta-cell dysfunction, because in their remaining beta-cells, insulin mRNA expression was significantly more impaired and the localization of glucose transporter-2 was perturbed. Thus the lack of IAPP has allowed exaggerated beta-cell cytotoxic actions of alloxan, suggesting that there may be beneficial features of IAPP actions in situations of beta-cell damage.  (+info)

Liver hyperplasia and paradoxical regulation of glycogen metabolism and glucose-sensitive gene expression in GLUT2-null hepatocytes. Further evidence for the existence of a membrane-based glucose release pathway. (12/340)

We investigated the impact of GLUT2 gene inactivation on the regulation of hepatic glucose metabolism during the fed to fast transition. In control and GLUT2-null mice, fasting was accompanied by a approximately 10-fold increase in plasma glucagon to insulin ratio, a similar activation of liver glycogen phosphorylase and inhibition of glycogen synthase and the same elevation in phosphoenolpyruvate carboxykinase and glucose-6-phosphatase mRNAs. In GLUT2-null mice, mobilization of glycogen stores was, however, strongly impaired. This was correlated with glucose-6-phosphate (G6P) levels, which remained at the fed values, indicating an important allosteric stimulation of glycogen synthase by G6P. These G6P levels were also accompanied by a paradoxical elevation of the mRNAs for L-pyruvate kinase. Re-expression of GLUT2 in liver corrected the abnormal regulation of glycogen and L-pyruvate kinase gene expression. Interestingly, GLUT2-null livers were hyperplasic, as revealed by a 40% increase in liver mass and 30% increase in liver DNA content. Together, these data indicate that in the absence of GLUT2, the G6P levels cannot decrease during a fasting period. This may be due to neosynthesized glucose entering the cytosol, being unable to diffuse into the extracellular space, and being phosphorylated back to G6P. Because hepatic glucose production is nevertheless quantitatively normal, glucose produced in the endoplasmic reticulum may also be exported out of the cell through an alternative, membrane traffic-based pathway, as previously reported (Guillam, M.-T., Burcelin, R., and Thorens, B. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 12317-12321). Therefore, in fasting, GLUT2 is not required for quantitative normal glucose output but is necessary to equilibrate cytosolic glucose with the extracellular space. In the absence of this equilibration, the control of hepatic glucose metabolism by G6P is dominant over that by plasma hormone concentrations.  (+info)

Transgenic reexpression of GLUT1 or GLUT2 in pancreatic beta cells rescues GLUT2-null mice from early death and restores normal glucose-stimulated insulin secretion. (13/340)

GLUT2-null mice are hyperglycemic, hypoinsulinemic, hyperglucagonemic, and glycosuric and die within the first 3 weeks of life. Their endocrine pancreas shows a loss of first phase glucose-stimulated insulin secretion (GSIS) and inverse alpha to beta cell ratio. Here we show that reexpression by transgenesis of either GLUT1 or GLUT2 in the pancreatic beta cells of these mice allowed mouse survival and breeding. The rescued mice had normal-fed glycemia but fasted hypoglycemia, glycosuria, and an elevated glucagon to insulin ratio. Glucose tolerance was, however, normal. In vivo, insulin secretion assessed following hyperglycemic clamps was normal. In vitro, islet perifusion studies revealed that first phase of insulin secretion was restored as well by GLUT1 or GLUT2, and this was accompanied by normalization of the glucose utilization rate. The ratio of pancreatic insulin to glucagon and volume densities of alpha to beta cells were, however, not corrected. These data demonstrate that 1) reexpression of GLUT1 or GLUT2 in beta cells is sufficient to rescue GLUT2-null mice from lethality, 2) GLUT1 as well as GLUT2 can restore normal GSIS, 3) restoration of GSIS does not correct the abnormal composition of the endocrine pancreas. Thus, normal GSIS does not depend on transporter affinity but on the rate of uptake at stimulatory glucose concentrations.  (+info)

Characterization and partial purification of liver glucose transporter GLUT2. (14/340)

GLUT2, the major facilitative glucose transporter isoform expressed in hepatocytes, pancreatic beta-cells, and absorptive epithelial cells, is unique not only with its low affinity and broad substrate specificity as a glucose transporter, but also with its implied function as a glucose-sensor. As a first essential step toward structural and biochemical elucidation of these unique, GLUT2 functions, we describe here the differential solubilization and DEAE-column chromatography of rat hepatocyte GLUT2 protein and its reconstitution into liposomes. The reconstituted GLUT2 bound cytochalasin B in a saturable manner with an apparent dissociation constant (K(d)) of 2.3 x 10(-6) M and a total binding capacity (B(T)) of 8.1 nmol per mg protein. The binding was completely abolished by 2% mercury chloride, but not affected by cytochalasin E. Significantly, the binding was also not affected by 500 mM D-glucose or 3-O-methyl D-glucose (3OMG). The purified GLUT2 catalyzed mercury chloride-sensitive 3OMG uptake, and cytochalasin B inhibited this 3OMG uptake. The inhibition was dose-dependent with respect to cytochalasin B, but was independent of 3OMG concentrations. These findings demonstrate that our solubilized GLUT2 reconstituted in liposomes is at least 60% pure and functional, and that GLUT2 is indeed unique in that its cytochalasin B binding is not affected by its substrate (D-glucose) binding. Our partially purified GLUT2 reconstituted in vesicles will be useful in biochemical and structural elucidation of GLUT2 as a glucose transporter and as a possible glucose sensor.  (+info)

Persistent expression of HNF6 in islet endocrine cells causes disrupted islet architecture and loss of beta cell function. (15/340)

We used transgenesis to explore the requirement for downregulation of hepatocyte nuclear factor 6 (HNF6) expression in the assembly, differentiation, and function of pancreatic islets. In vivo, HNF6 expression becomes downregulated in pancreatic endocrine cells at 18. 5 days post coitum (d.p.c.), when definitive islets first begin to organize. We used an islet-specific regulatory element (pdx1(PB)) from pancreatic/duodenal homeobox (pdx1) gene to maintain HNF6 expression in endocrine cells beyond 18.5 d.p.c. Transgenic animals were diabetic. HNF6-overexpressing islets were hyperplastic and remained very close to the pancreatic ducts. Strikingly, alpha, delta, and PP cells were increased in number and abnormally intermingled with islet beta cells. Although several mature beta cell markers were expressed in beta cells of transgenic islets, the glucose transporter GLUT2 was absent or severely reduced. As glucose uptake/metabolism is essential for insulin secretion, decreased GLUT2 may contribute to the etiology of diabetes in pdx1(PB)-HNF6 transgenics. Concordantly, blood insulin was not raised by glucose challenge, suggesting profound beta cell dysfunction. Thus, we have shown that HNF6 downregulation during islet ontogeny is critical to normal pancreas formation and function: continued expression impairs the clustering of endocrine cells and their separation from the ductal epithelium, disrupts the spatial organization of endocrine cell types within the islet, and severely compromises beta cell physiology, leading to overt diabetes.  (+info)

Stimulation of fructose transport across the intestinal brush-border membrane by PMA is mediated by GLUT2 and dynamically regulated by protein kinase C. (16/340)

Perfusion of rat jejunum in vitro with PMA increased fructose transport by 70% compared with control values and was blocked by the protein kinase C (PKC) inhibitor chelerythrine. The brush-border membrane contained both the fructose transporters GLUT5 and GLUT2; the presence of the latter was confirmed by luminal biotinylation. PMA increased the GLUT2 level 4-fold within minutes, so that the level was comparable with that of the basolateral membrane, but had no effect on GLUT5 level. GLUT2 was functional, accessible to luminal fructose and could be inhibited selectively by phloretin to permit determination of GLUT2- and GLUT5-mediated transport components. The 4-fold increase in GLUT2 level induced by PMA was matched by a 4-fold increase in GLUT2-mediated transport: there was a compensatory fall in the GLUT5-mediated rate. The pattern of dynamic trafficking was seen only for GLUT2, not GLUT5 or SGLT1, implying that GLUT2 trafficks to the brush-border membrane by a different pathway. Trafficking of GLUT2 to the brush-border membrane correlated with activation of PKC betaII, implying that this isoenzyme is likely to control trafficking. Since PKC is activated by endogenous hormones, GLUT2 levels in vivo are 3-4-fold those in vitro; moreover, because PKC is inactivated as soon as intestine is excised, GLUT2 is lost from the brush-border within minutes in vitro. It is therefore difficult to detect GLUT2 in most in vitro preparations and its role in intestinal sugar absorption across the brush-border membrane has accordingly been overlooked.  (+info)