Regulation of glucogenesis by thyroid hormones in fetal sheep during late gestation. (65/605)

The effects of thyroid hormone deficiency in utero on the fetal glucogenic capacity were investigated by measuring glucose production and hepatic levels of glycogen and gluconeogenic enzymes in normal sheep fetuses in the fed and fasted states during late gestation and in those made thyroid hormone deficient by fetal thyroidectomy (TX). In the fed state, fetal TX had no effect on glucose uptake, utilisation or production by the fetus. It also had no apparent effect on the glycogen content or activities of the key gluconeogenic enzymes in the fetal liver. In addition, fetal plasma concentrations of insulin, cortisol, adrenaline or noradrenaline were unaffected by fetal TX in the fed state. In contrast, the rates of fetal O(2) consumption and CO(2) production per kilogram fetal bodyweight were significantly lower in TX than in intact fetuses in the fed state (P<0.05). TX prevented fetal glucose production in response to maternal fasting for 48 h. It also abolished the normal decreases in the fetal glucose carbon oxidation fraction, the rate of CO(2) production from glucose carbon and in the fraction of the umbilical O(2) uptake used for glucose carbon oxidation that occur during fasting in intact fetuses. At the end of the fast, plasma noradrenaline concentrations and hepatic levels of glycogen, glucose 6-phosphatase, fructose diphosphatase and alanine aminotransferase were significantly lower in TX than in intact fetuses. These observations show that thyroid hormones are essential for glucogenesis in the sheep fetus during late gestation and suggest that these hormones act both on the hepatic glucogenic pathways and on the mechanisms activating glucogenesis in utero.  (+info)

The effect of thiamine supplementation on tumour proliferation. A metabolic control analysis study. (66/605)

Thiamine deficiency frequently occurs in patients with advanced cancer and therefore thiamine supplementation is used as nutritional support. Thiamine (vitamin B1) is metabolized to thiamine pyrophosphate, the cofactor of transketolase, which is involved in ribose synthesis, necessary for cell replication. Thus, it is important to determine whether the benefits of thiamine supplementation outweigh the risks of tumor proliferation. Using oxythiamine (an irreversible inhibitor of transketolase) and metabolic control analysis (MCA) methods, we measured an in vivo tumour growth control coefficient of 0.9 for the thiamine-transketolase complex in mice with Ehrlich's ascites tumour. Thus, transketolase enzyme and thiamine clearly determine cell proliferation in the Ehrlich's ascites tumour model. This high control coefficient allows us to predict that in advanced tumours, which are commonly thiamine deficient, supplementation of thiamine could significantly increase tumour growth through transketolase activation. The effect of thiamine supplementation on tumour proliferation was demonstrated by in vivo experiments in mice with the ascites tumour. Thiamine supplementation in doses between 12.5 and 250 times the recommended dietary allowance (RDA) for mice were administered starting on day four of tumour inoculation. We observed a high stimulatory effect on tumour growth of 164% compared to controls at a thiamine dose of 25 times the RDA. This growth stimulatory effect was predicted on the basis of correction of the pre-existing level of thiamine deficiency (42%), as assayed by the cofactor/enzyme ratio. Interestingly, at very high overdoses of thiamine, approximately 2500 times the RDA, thiamine supplementation had the opposite effect and caused 10% inhibition of tumour growth. This effect was heightened, resulting in a 36% decrease, when thiamine supplementation was administered from the 7th day prior to tumour inoculation. Our results show that thiamine supplementation sufficient to correct existing thiamine deficiency stimulates tumour proliferation as predicted by MCA. The tumour inhibitory effect at high doses of thiamine is unexplained and merits further study.  (+info)

Fatty acid and amino acid modulation of glucose cycling in isolated rat hepatocytes. (67/605)

We studied the influence of glucose/glucose 6-phosphate cycling on glycogen deposition from glucose in fasted-rat hepatocytes using S4048 and CP320626, specific inhibitors of glucose-6-phosphate translocase and glycogen phosphorylase respectively. The effect of amino acids and oleate was also examined. The following observations were made: (1) with glucose alone, net glycogen production was low. Inhibition of glucose-6-phosphate translocase increased intracellular glucose 6-phosphate (3-fold), glycogen accumulation (5-fold) without change in active (dephosphorylated) glycogen synthase (GSa) activity, and lactate production (4-fold). With both glucose 6-phosphate translocase and glycogen phosphorylase inhibited, glycogen deposition increased 8-fold and approached reported in vivo rates of glycogen deposition during the fasted-->fed transition. Addition of a physiological mixture of amino acids in the presence of glucose increased glycogen accumulation (4-fold) through activation of GS and inhibition of glucose-6-phosphatase flux. Addition of oleate with glucose present decreased glycolytic flux and increased the flux through glucose 6-phosphatase with no change in glycogen deposition. With glucose 6-phosphate translocase inhibited by S4048, oleate increased intracellular glucose 6-phosphate (3-fold) and net glycogen production (1.5-fold), without a major change in GSa activity. It is concluded that glucose cycling in hepatocytes prevents the net accumulation of glycogen from glucose. Amino acids activate GS and inhibit flux through glucose-6-phosphatase, while oleate inhibits glycolysis and stimulates glucose-6-phosphatase flux. Variation in glucose 6-phosphate does not always result in activity changes of GSa. Activation of glucose 6-phosphatase flux by fatty acids may contribute to the increased hepatic glucose production as seen in Type 2 diabetes.  (+info)

Trehalose-6-phosphate phosphorylase is part of a novel metabolic pathway for trehalose utilization in Lactococcus lactis. (68/605)

Lactococcus lactis splits phosphorylated trehalose by the action of inorganic phosphate-dependent trehalose-6-phosphate phosphorylase (TrePP) in a novel catabolic pathway. TrePP was found to catalyze the reversible conversion of trehalose 6-phosphate into beta-glucose 1-phosphate and glucose 6-phosphate by measuring intermediate sugar phosphates in cell extracts from trehalose-cultivated lactococci. According to native PAGE and SDS-PAGE, TrePP was shown to be a monomeric enzyme with a molecular mass of 94 kDa. Reaction kinetics suggested that the enzyme follows a ternary complex mechanism with optimal phosphorolysis at 35 degrees C and pH 6.3. The equilibrium constants were found to be 0.026 and 0.032 at pH 6.3 and 7.0, respectively, favoring the formation of trehalose 6-phosphate. The Michaelis-Menten constants of TrePP for trehalose 6-phosphate, inorganic phosphate, beta-glucose 1-phosphate, and glucose 6-phosphate were determined to be 6, 32, 0.9, and 4 mm, respectively. The TrePP-encoding gene, designated trePP, was localized in a putative trehalose operon of L. lactis. This operon includes the gene encoding beta-phosphoglucomutase in addition to three open reading frames believed to encode a transcriptional regulator and two trehalose-specific phosphotransferase system components. The identity of trePP was confirmed by determining the N-terminal amino acid sequence of TrePP and by its overexpression in Escherichia coli and L. lactis, as well as the construction of a lactococcal trePP knockout mutant. Furthermore, both TrePP and beta-phosphoglucomutase activity were detected in Enterococcus faecalis cell extract, indicating that this bacterium exhibits the same trehalose assimilation route as L. lactis.  (+info)

Glucose catabolism in cancer cells: identification and characterization of a marked activation response of the type II hexokinase gene to hypoxic conditions. (69/605)

One of the most common signatures of highly malignant tumors is their capacity to metabolize more glucose to lactic acid than their tissues of origin. Hepatomas exhibiting this phenotype are dependent on the high expression of type II hexokinase, which supplies such tumors with abundant amounts of glucose 6-phosphate, a significant carbon and energy source especially under hypoxic conditions. Here we report that the distal region of the hepatoma type II hexokinase promoter displays consensus motifs for hypoxia-inducible factor (HIF-1) that overlap E-box sequences known to be related in other gene promoters to glucose response. Moreover, we show that subjecting transfected hepatoma cells to hypoxic conditions activates the type II hexokinase promoter almost 3-fold, a value that approaches 7-fold in the presence of glucose. Consistent with these findings is the induction under hypoxic conditions of the HIF-1 protein. Reporter gene analyses with a series of nested deletion mutants of the hepatoma type II hexokinase promoter show that a significant fraction of the total activation observed under hypoxic conditions localizes to the distal region where the overlapping HIF-1/E-box sequences are located. Finally, DNase I footprint analysis with a segment of the promoter containing these elements reveals the binding of several nuclear proteins. In summary, these novel studies identify and characterize a marked glucose-modulated activation response of the type II hexokinase gene to hypoxic conditions within highly glycolytic hepatoma cells, a property that may help assure that such cells exhibit a growth and survival advantage over their parental cells of origin.  (+info)

Tubulin and microtubule are potential targets for brain hexokinase binding. (70/605)

The metabolite-modulated association of a fraction of hexokinase to mitochondria in brain is well documented, however, the involvement of other non-mitochondrial components in the binding of the hexokinase is controversial. Now we present evidence that the hexokinase binds both tubulin and microtubules in brain in vitro systems. The interaction of tubulin with purified bovine brain hexokinase was characterized by displacement enzyme-linked immunosorbent assay using specific anti-brain hexokinase serum (IC(50)=4.0+/-1.4 microM). This value virtually was not affected by specific ligands such as ATP or glucose 6-phosphate. Microtubule-bound hexokinase obtained in reconstituted systems using microtubule and purified hexokinase or brain extract was visualized by transmission and immunoelectron microscopy on the surface of tubules. The association of purified bovine brain hexokinase with either tubulin or microtubules caused about 30% increase in the activity of the enzyme. This activation was also observed in brain, but not in muscle cell-free extract. The possible physiological relevance of the multiple heteroassociation of brain hexokinase is discussed.  (+info)

Glucose-6-phosphate-dependent phosphoryl flow through the Uhp two-component regulatory system. (71/605)

Expression of the UhpT sugar-phosphate transporter in Escherichia coli is regulated at the transcriptional level via the UhpABC signalling cascade. Sensing of extracellular glucose 6-phosphate (G6P), by membrane-bound UhpC, modulates a second membrane-bound protein, UhpB, resulting in autophosphorylation of a conserved histidine residue in the cytoplasmic (transmitter) domain of the latter. Subsequently, this phosphoryl group is transferred to a conserved aspartate residue in the response-regulator UhpA, which then initiates uhpT transcription, via binding to the uhpT promoter region. This study demonstrates the hypothesized transmembrane signal transfer in an ISO membrane set-up, i.e. in a suspension of UhpBC-enriched membrane vesicles, UhpB autophosphorylation is stimulated, in the presence of [gamma-(32)P]ATP, upon intra-vesicular sensing of G6P by UhpC. Subsequently, upon addition of UhpA, very rapid and transient UhpA phosphorylation takes place. When P approximately UhpA is added to G6P-induced UhpBC-enriched membrane vesicles, rapid UhpA dephosphorylation occurs. So, in the G6P-activated state, UhpB phosphatase activity dominates over kinase activity, even in the presence of saturating amounts of G6P. This may imply that maximal in vivo P approximately UhpA levels are low and/or that, to keep sufficient P approximately UhpA accumulated to induce uhpT transcription, the uhpT promoter DNA itself is involved in stabilization/sequestration of P approximately UhpA.  (+info)

Calorie restriction increases muscle insulin action but not IRS-1-, IRS-2-, or phosphotyrosine-PI 3-kinase. (72/605)

Skeletal muscle insulin sensitivity improves with a moderate reduction in caloric intake. We studied possible mechanisms in calorie-restricted [CR: 60% ad libitum (AL) intake] compared with AL rats, utilizing a time-matched feeding protocol (3, 5, 10, or 20 days). Visceral fat mass was lower for CR vs. AL at 10 and 20 days, but insulin-stimulated muscle 3-O-methylglucose transport was higher in CR vs. AL rats only at 20 days. Fructose 6-phosphate (precursor for the hexosamine biosynthetic pathway, which has inverse relationship with insulin sensitivity) was reduced only at 3 days of CR. Insulin stimulation of insulin receptor substrate (IRS)-1-, IRS-2-, and antiphosphotyrosine-associated phosphatidylinositol 3-kinase (PI3K) was similar for CR and AL. A PI3K inhibitor, wortmannin, reduced insulin-stimulated 3-O-methylglucose transport to basal levels, regardless of diet. With brief time-matched CR, reduced visceral fat mass precedes increased insulin sensitivity; transient reduction in fructose 6-phosphate may trigger more persistent changes but does not coincide with enhanced insulin action; and PI3K is essential for insulin-stimulated 3-O-methylglucose transport in CR as well as AL rats, although insulin-stimulated PI3K is not significantly greater in CR compared with AL animals.  (+info)