Permeabilization via the P2X7 purinoreceptor reveals the presence of a Ca2+-activated Cl- conductance in the apical membrane of murine tracheal epithelial cells. (33/531)

Calcium-activated Cl(-) secretion is an important modulator of regulated ion transport in murine airway epithelium and is mediated by an unidentified Ca(2+)-stimulated Cl(-) channel. We have transfected immortalized murine tracheal epithelial cells with the cDNA encoding the permeabilizing P2X(7) purinoreceptor (P2X(7)-R) to selectively permeabilize the basolateral membrane and thereby isolate the apical membrane Ca(2+)-activated Cl(-) current. In P2X(7)-R-permeabilized cells, we have demonstrated that UTP stimulates a Cl(-) current across the apical membrane of CF and normal murine tracheal epithelial cells. The magnitude of the UTP-stimulated current was significantly greater in CF than in normal cells. Ion substitution studies demonstrated that the current exhibited a permselectivity sequence of Cl(-) > I(-) > Br(-) > gluconate(-). We have also determined a rank order of potency for putative Cl(-) channel blockers: niflumic acid > or = 5-nitro-2-(3-phenylpropylamino)benzoic acid > 4, 4'-diisothiocyanostilbene-2,2'-disulfonate > glybenclamide >> diphenlyamine-2-carboxylate, tamoxifen, and p-tetra-sulfonato-tetra-methoxy-calix[4]arene. Complete characterization of this current and the corresponding single channel properties could lead to the development of a new therapy to correct the defective airway surface liquid in cystic fibrosis patients.  (+info)

Development of rat chorda tympani sodium responses: evidence for age-dependent changes in global amiloride-sensitive Na(+) channel kinetics. (34/531)

In rat, chorda tympani nerve taste responses to Na(+) salts increase between roughly 10 and 45 days of age to reach stable, mature magnitudes. Previous evidence from in vitro preparations and from taste nerve responses using Na(+) channel blockers suggests that the physiological basis for this developmental increase in gustatory Na(+) sensitivity is the progressive addition of functional, Na(+) transduction elements (i.e., amiloride-sensitive Na(+) channels) to the apical membranes of fungiform papilla taste receptor cells. To avoid potential confounding effects of pharmacological interventions and to permit quantification of aggregate Na(+) channel behavior using a kinetic model, we obtained chorda tympani nerve responses to NaCl and sodium gluconate (NaGlu) during receptive field voltage clamp in rats aged from 12-14 to 60 days and older (60+ days). Significant, age-dependent increases in chorda tympani responses to these stimuli occurred as expected. Importantly, apical Na(+) channel density, estimated from an apical Na(+) channel kinetic model, increased monotonically with age. The maximum rate of Na(+) response increase occurred between postnatal days 12-14 and 29-31. In addition, estimated Na(+) channel affinity increased between 12-14 and 19-23 days of age, i.e., on a time course distinct from that of the maximum rate of Na(+) response increase. Finally, estimates of the fraction of clamp voltage dropped across taste receptor apical membranes decreased between 19-23 and 29-31 days of age for NaCl but remained stable for NaGlu. The stimulus dependence of this change is consistent with a developmental increase in taste bud tight junctional Cl(-) ion permeability that lags behind the developmental increase in apical Na(+) channel density. A significant, indirect anion influence on apical Na(+) channel properties was present at all ages tested. This influence was evident in the higher apparent apical Na(+) channel affinities obtained for NaCl relative to NaGlu. This stimulus-dependent modulation of apical Na(+) channel apparent affinity relies on differences in the transepithelial potentials between NaCl and NaGlu. These originate from differences in paracellular anion permeability but act also on the driving force for Na(+) through apical Na(+) channels. Detection of such an influence on taste depends fundamentally on the preservation of taste bud polarity and on a direct measure of sensory function, such as the response of primary afferents.  (+info)

Lag in adaptation to lactose as a probe to the timing of permease incorporation into the cell membrane. (35/531)

If bacteria are incapable of forming and incorporating proteins into the cytoplasmic membranes in all phases of the cell cycle, then not all cells from an asynchronous culture should be capable of growth when switched to a new carbon and energy source whose metabolism requires new membrane function. The transfer of an inducible culture to low lactose provides such a situation since the cells cannot grow unless galactoside permease can function to concentrate the lactose internally. From such experiments, it was concluded that the Y gene product of the lac operon is synthesized, incorporated, and can start functioning in active transport, at any time throughout the bulk of the cell cycle. Not only were the lags before growth re-ensued much shorter than would be expected if the membrane transport capability could only be developed in a small portion of the cycle, but brief pulses of a gratuitous inducer shortened the lags much further. Three types of Escherichia coli ML 30 culture were studied: cells that had exhausted the limiting glucose; cells taken directly from glucose-limited chemostats; and a washed suspension of highly catabolite repressed cells from cultures grown in high levels of glucose and gluconate. The growth studies reported here were performed on-line with a minicomputer. They represent at least an order of magnitude increase in accuracy in estimating growth parameters over previous instrumentation.  (+info)

The energy-coupling controlled efflux of 2-keto-3-deoxy-D-gluconate in Escherichia coli K 12. (36/531)

Experiments were devised to test the plausibility and the predictions of a efflux rate equation which was previously derived [10]9 1. 2-Keto-3-deoxy-D-gluconate transport system conforms with universal laws relating zero-trans influx, influx at steady-state, steady-state levels of accumulation to external and internal substrate concentrations. 2. Full-time-course uptake kinetics fit the linearized graphical representation that can be inferred from the integrated rate equation. 3. Influx does not depend upon internal substrate concentration nor upon energy-coupling. 4. Zero-trans outflux (leak inot empty medium) is a first-order process (rate constant: 0.02 min-1) and not mediated by the carrier. Absence of cis-competition with D-glucuronate is in agreement with a simple diffusion mechanism. 5. Outflux increases when external substrate concentration is raised (counterflow). Outflux at steady-state equilibrates influx, and is a first-order process (rate constant: 0.15 min-1). 6. Uncoupling with azide leads to accelerate zero-trans outflux by a factor of 2-3. No further acceleration is obtained when other classical uncouplers are used. The process remains first-order, independent of the amount of carrier, and is accelerated by the presence of internal D-glucuronate as a result from trans-inhibition of the recapture. 7. Exchange outflux is all the more accelerated by azide as the carrier is less saturated. The process is clearly carrier-mediated and the outflux rate obeys a Michaelis law with respect to internal concentration. V is equal to V for influx. 8. Homo and hetero-overshoot experiments are in agreement with the participation of the carrier for mediating influx as well as outflux. 9. The kinetics of D-glucuronate outflux in a strain lacking the specific hexuronate permease but carrying the 2-keto-3-deoxy-D-glucuronate permease are similar to those obtained with 2-keto-3-deoxy-D-gluconate. We draw the conclusion that energy-coupling promotes the adjustment of outflux without interfering with influx rate. It apparently acts by reducing, in a continuous range, the affinity of the carrier facing inwards. The discussion is focused on the comparison with previously published models and on possible molecular mechanisms.  (+info)

Effect of treatment with zinc gluconate or zinc acetate on experimental and natural colds. (37/531)

Two clinical trials were conducted, one involving 273 subjects with experimental rhinovirus colds and the other involving 281 subjects with natural colds. Symptomatic volunteers were randomized to receive oral lozenges containing zinc gluconate (13.3 mg), zinc acetate (5 or 11.5 mg), or placebo. The median duration of illness in zinc gluconate recipients was 2.5 days, contrasted with 3.5 days in the placebo recipients (P=.035), in the experimental colds study. Zinc gluconate had no effect on symptom severity and zinc acetate had no effect on either duration or severity. Neither formulation had an effect on the duration or severity of natural cold symptoms. Evaluation of blinding, taste, and adverse events revealed no significant differences among the 4 treatment arms. Zinc compounds appear to have little utility for common-cold treatment.  (+info)

Biochemical characterization and mechanism of action of a thermostable beta-glucosidase purified from Thermoascus aurantiacus. (38/531)

An extracellular beta-glucosidase from Thermoascus aurantiacus was purified to homogeneity by DEAE-Sepharose, Ultrogel AcA 44 and Mono-P column chromatography. The enzyme was a homotrimer, with a monomer molecular mass of 120 kDa; only the trimer was optimally active at 80 degrees C and at pH 4.5. At 90 degrees C, the enzyme showed 70% of its optimal activity. It was stable at pH 5.2 and at temperatures up to 70 degrees C for 48 h, but stability decreased above 70 degrees C and at pH values above and below 5.0. The enzyme hydrolysed aryl and alkyl beta-d-glucosides and cello-oligosaccharides, and was specific for substrates with a beta-glycosidic linkage. The hydroxy groups at positions 2, 4 and 6 of a glucose residue at the non-reducing end of a disaccharide appeared to be essential for catalysis. The enzyme had the lowest K(m) towards p-nitrophenyl beta-d-glucoside (0.1137 mM) and the highest k(cat) towards cellobiose and beta,beta-trehalose (17052 min(-1)). It released one glucose unit at a time from the non-reducing end of cello-oligosaccharides, and the rate of hydrolysis decreased with an increase in chain length. Glucose and d-delta-gluconolactone inhibited the beta-glucosidase competitively, with K(i) values of 0.29 mM and 8.3 nM respectively, while methanol, ethanol and propan-2-ol activated the enzyme. The enzyme catalysed the synthesis of methyl, ethyl and propyl beta-d-glucosides in the presence of methanol, ethanol and propan-2-ol respectively with either glucose or cellobiose, although cellobiose was preferred. An acidic pH favoured hydrolysis and transglycosylation, but high concentrations of alcohols favoured the latter reaction. The stereochemistry of cellobiose hydrolysis revealed that beta-glucosidase from T. aurantiacus is a retaining glycosidase, while N-terminal amino acid sequence alignment indicated that it is a member of glycoside hydrolase family 3.  (+info)

Chloride channel function is linked to epithelium-dependent airway relaxation. (39/531)

We previously reported that substance P (SP) and ATP evoke transient, epithelium-dependent relaxation of mouse tracheal smooth muscle. Since both SP and ATP are known to evoke transepithelial Cl- secretion across epithelial monolayers, we tested the hypothesis that epithelium-dependent relaxation of mouse trachea depends on Cl- channel function. In perfused mouse tracheas, the responses to SP and ATP were both inhibited by the Cl- channel inhibitors diphenylamine-2-carboxylate and 5-nitro-2-(3-phenylpropylamino)benzoate. Relaxation to ATP or SP was unaffected by 4,4'-dinitrostilbene-2,2'-disulfonic acid (DNDS), and relaxation to SP was unaffected by either DIDS or DNDS. Replacing Cl- in the buffer solutions with the impermeable anion gluconate on both sides of the trachea inhibited relaxation to SP or ATP. In contrast, increasing the gradient for Cl- secretion using Cl- free medium only in the tracheal lumen enhanced the relaxation to SP or ATP. We conclude that Cl- channel function is linked to receptor-mediated, epithelium-dependent relaxation. The finding that relaxation to SP was not blocked by DIDS suggested the involvement of a DIDS-insensitive Cl- channel, potentially the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel. To test this hypothesis, we evaluated tracheas from CFTR-deficient mice and found that the peak relaxation to SP or ATP was not significantly different from those responses in wild-type littermates. This suggests that a DIDS-insensitive Cl- channel other than CFTR is active in the SP response. This work introduces a possible role for Cl- pathways in the modulation of airway smooth muscle function and may have implications for fundamental studies of airway function as well as therapeutic approaches to pulmonary disease.  (+info)

Covalent intermediate trapped in 2-keto-3-deoxy-6- phosphogluconate (KDPG) aldolase structure at 1.95-A resolution. (40/531)

2-Keto-3-deoxy-6-phosphogluconate (KDPG) aldolase catalyzes the reversible cleavage of KDPG to pyruvate and glyceraldehyde-3-phosphate. The enzyme is a class I aldolase whose reaction mechanism involves formation of Schiff base intermediates between Lys-133 and a keto substrate. A covalent adduct was trapped by flash freezing KDPG aldolase crystals soaked with 10 mM pyruvate in acidic conditions at pH 4.6. Structure determination to 1.95-A resolution showed that pyruvate had undergone nucleophilic attack with Lys-133, forming a protonated carbinolamine intermediate, a functional Schiff base precursor, which was stabilized by hydrogen bonding with active site residues. Carbinolamine interaction with Glu-45 indicates general base catalysis of several rate steps. Stereospecific addition is ensured by aromatic interaction of Phe-135 with the pyruvate methyl group. In the native structure, Lys-133 donates all of its hydrogen bonds, indicating the presence of an epsilon-ammonium salt group. Nucleophilic activation is postulated to occur by proton transfer in the monoprotonated zwitterionic pair (Glu-45/Lys-133). Formation of the zwitterionic pair requires prior side chain rearrangement by protonated Lys-133 to displace a water molecule, hydrogen bonded to the zwitterionic residues.  (+info)