Hyperglycemia-induced beta-cell apoptosis in pancreatic islets of Psammomys obesus during development of diabetes. (9/1552)

The gerbil Psammomys obesus develops nutrition-dependent diabetes associated with moderate obesity. The disease is characterized by initial hyperinsulinemia, progressing to hypoinsulinemia associated with depleted pancreatic insulin stores. The contribution of changes in beta-cell turnover to insulin deficiency was investigated in vivo during transition to overt diabetes. Normo glycemic diabetes-prone P. obesus animals who were given a high-calorie diet developed hyperglycemia within 4 days, which was found to be associated with a progressive decline in pancreatic insulin content. This was accompanied by a transient increase in beta-cell proliferative activity and by a prolonged increase in the rate of beta-cell death, culminating in disruption of islet architecture. The hypothesis that "glucotoxicity" was responsible for these in vivo changes was investigated in vitro in primary islet cultures. Exposure of islets from diabetes-prone P. obesus to high glucose levels resulted in a dose-dependent increase in beta-cell DNA fragmentation. In contrast, high glucose levels did not induce DNA fragmentation in rat islets, whereas islets from a diabetes-resistant P. obesus line exhibited a reduced and delayed response. Aminoguanidine did not prevent glucose-induced beta-cell DNA fragmentation in vitro, suggesting that formation of nitric oxide and/or advanced glycation end products plays no major role. Elevated glucose concentrations stimulated beta-cell proliferation in both rat and P. obesus islets. However, unlike the marked long-lasting effect in rat islets, only a transient and reduced proliferative response was observed in P. obesus islets; furthermore, beta-cell proliferation was inhibited after prolonged exposure to elevated glucose levels. These results suggest that hyperglycemia-induced beta-cell death coupled with reduced proliferative capacity may contribute to the insulin deficiency and deterioration of glucose homeostasis in P. obesus. Similar adverse effects of hyperglycemia could play a role in the evolution of type 2 diabetes in genetically susceptible individuals.  (+info)

Characterization of YS-27, an axenic Korean strain of Entamoeba histolytica. (10/1552)

Characterization of YS-27, an axenic Entamoeba strain, was performed by three different laboratory methods. Zymodeme analysis using starch gel electrophoresis and PCR with species-specific primers showed that YS-27 is a pathogenic Entamoeba which belongs to the group II zymodeme. Pathogenicity of YS-27 was further confirmed by observing the formation of liver abscess in Mongolian gerbils. These results showed that YS-27 is E. hisolytica.  (+info)

The reversible change of GluR2 RNA editing in gerbil hippocampus in course of ischemic tolerance. (11/1552)

The ischemic tolerance is known to show protective effects on the neurons and the restricted Ca2+ influx through Ca2+ channels might be involved. In alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor, ribonucleic acid (RNA) editing of the GluR2 subunit determines receptor desensitization and Ca2+ permeability. The authors investigated the effect of ischemic tolerance on the messenger RNA editing of Q/R and R/G sites of GluR2 subunit in hippocampus. It was found that the rate of RNA editing in Q/R site showed no change (100% edited), whereas that in R/G site decreased significantly (83.3% normal editing level to 60.4%) at day 3 (preconditioning period) and returned to normal level at day 14 (after preconditioning period). Further investigation revealed that the decrease of editing rate in ischemic tolerance resulted mainly from the decrease of editing in CA1 area.  (+info)

SR146131: a new potent, orally active, and selective nonpeptide cholecystokinin subtype 1 receptor agonist. II. In vivo pharmacological characterization. (12/1552)

SR146131 is a potent and selective agonist at cholecystokinin subtype 1 (CCK1) receptors in vitro. The present study evaluates the activity of the compound in vivo. SR146131 completely inhibited gastric and gallbladder emptying in mice (ED50 of 66 and 2.7 micrograms/kg p.o., respectively). SR146131 dose dependently reduced food intake in fasted rats (from 0.1 mg/kg p.o.), in nonfasted rats in which food intake had been highly stimulated by the administration of neuropeptide Y (1-36) (from 0.3 mg/kg p.o.), in fasted gerbils (from 0.1 mg/kg p.o.), and in marmosets maintained on a restricted diet (from 3 mg/kg p.o.). SR146131 (10 mg/kg p.o.) also increased the number of Fos-positive cells in the hypothalamic paraventricular nucleus of rats. Locomotor activity of mice was reduced by orally administered SR146131 (from 0.3 mg/kg p.o.). When administered intrastriatally, SR146131 elicited contralateral turning behavior in mice. Furthermore, orally administered SR146131 (0.3-10 mg/kg), also reduced the levels of cerebellar cyclic GMP. Finally, SR146131 (0.1 microgram/kg to 1 mg/kg, p.o.) significantly and dose dependently antagonized fluphenazine-induced mouth movements in rats. The CCK1 antagonist SR27897B prevented all the effects of SR146131. Conversely, SR146131 was unable to elicit any agonist or antagonist effects in a model of CCK2 receptor stimulation in vivo. SR146131 is a very potent and selective nonpeptide CCK1 agonist in vivo. SR146131 is more potent than any other CCK1 agonists reported to date. Because pharmacodynamic studies suggest that SR146131 should have a high absolute bioavailability, it may be a promising drug for the treatment of eating and motor disorders in humans.  (+info)

Helicobacter pylori infection enhances glandular stomach carcinogenesis in Mongolian gerbils treated with chemical carcinogens. (13/1552)

Helicobacter pylori (Hp) is thought to be a stomach carcinogen from epidemiological findings. To determine the effects of infection with the bacteria on experimental carcinogenesis, a study of the glandular stomach of Mongolian gerbils (MGs) was performed. Male MGs were treated with N-methyl-N'-nitro-N-nitrosoguanidine followed by inoculation with Hp or infected with Hp followed by N-methyl-N'-nitro-N-nitrosoguanidine administration. Animals were killed at week 50, and their excised stomachs underwent microbiological and histopathological examinations. In addition, a serological investigation was performed. The incidences of adenocarcinomas were significantly higher in animals treated with 60 or 300 p.p.m. N-methyl-N'-nitro-N-nitrosoguanidine for 10 weeks followed by Hp inoculation or Hp followed by 20 p.p.m. N-methyl-N'-nitro-N-nitrosoguanidine for 30 weeks than in the respective controls. Moreover, tumour-bearing animals had higher titres of anti-Hp antibodies than tumour-free animals. Of interest was the finding that a dose of 100 p.p.m. N-methyl-N'-nitro-N-nitrosoguanidine given to infected gerbils eradicated the Hp in about half the animals, with a concomitant reduction in the promoting effect. No tumours were found in animals infected with Hp without N-methyl-N'-nitro-N-nitrosoguanidine or non-treated gerbils. Hp infection enhances glandular stomach carcinogenesis in MGs treated with N-methyl-N'-nitro-N-nitrosoguanidine. Animals with high titres of anti-Hp antibodies are at greatest risk of developing neoplasms.  (+info)

Protection against ischemic damage by adenosine amine congener, a potent and selective adenosine A1 receptor agonist. (14/1552)

Although the selectivity and potency of adenosine amine congener (ADAC) at adenosine A1 receptors are similar to other highly selective agonists at this receptor type, the chemical structure of the N6 substituent is completely different. We now demonstrate that the characteristics of the therapeutic profile of ADAC are distinct from those observed during our previous studies of adenosine A1 receptor agonist-mediated neuroprotection. Most significantly, chronic treatment with low microgram doses of ADAC (25-100 microg/kg) protects against both mortality and neuronal damage induced by 10 min bilateral carotid occlusion in gerbils. At higher chronic doses, the statistical significance of the protective effect is lost. Acute preischemic administration of the drug at 75-200 microg/kg also results in a statistically significant reduction of postischemic mortality and morbidity. These data indicate that, contrary to other adenosine A1 receptor agonists whose chronic administration enhances postocclusive brain damage, ADAC may be a promising agent in treatment of both acute (e.g., cerebral ischemia) and chronic (seizures) disorders of the central nervous system in which adenosine A receptors appear to be involved.  (+info)

Serum from Entamoeba histolytica-infected gerbils selectively suppresses T cell proliferation by inhibiting interleukin-2 production. (15/1552)

Suppression of T and B cell responses during invasive amebiasis may be serum mediated. The mechanism of serum-mediated suppression of spleen cell lymphoproliferation from gerbils with amebic liver abscess was examined. Compared with uninfected gerbil serum (10%), serum samples collected at days 10, 30, and 60, but not at day 20 after infection, augmented both concanavalin A (Con A; T cell mitogen)- and lipopolysaccharide (LPS; B cell mitogen)-induced proliferation of homologous spleen cells. Only day 20 serum (>5%) inhibited Con A- but not LPS-induced proliferation of spleen cells from uninfected gerbils. The suppressive mechanism was independent of nitric oxide and prostaglandin but involved reduced interleukin (IL)-2 production. Addition of exogenous IL-2 reversed the suppressive effect of day 20 serum on Con A-stimulated proliferation. These results identify a mechanism whereby serum may contribute to transient suppression of T cell responses during Entamoeba histolytica infections.  (+info)

Changes in messenger ribonucleic acid species in gerbil brain perturbation. (16/1552)

The differential display technique was applied to observe the molecular dynamism of messenger ribonucleic acid (mRNA) in this study. Using this technique, the changes in mRNAs in brain perturbation such as ischemia was observed to understand the molecular base of the reaction. The transient cerebral ischemia was induced by clipping both common carotid arteries for 5 minutes in Mongolian gerbils. The total RNA was extracted from the hippocampal tissue samples before ischemia, 6 hours and 2 days after ischemia. The mRNAs were reverse transcribed and subsequently amplified by polymerase chain reaction (PCR). PCR products were displayed by autoradiography as ladders on a denaturing polyacrylamide gel. According to the autoradiography, mRNAs were divided into three patterns: 1) mRNAs obtained from the control decreased at 6 hours after 5-minute ischemia and disappeared at 2 days completely; 2) decreased mRNAs at 6 hours after ischemia recovered at 2 days; and 3) new mRNAs appeared after cerebral ischemia. Located bands of interest on a gel were cut out and reamplification of complementary deoxyribonucleic acid was performed. The pGEM-T Vector System was used for subcloning of the amplified PCR products. The differential display technique is the powerful method for detecting genes that are unique to ischemic processes and reactions.  (+info)