Acoustic and current-pulse responses of identified neurons in the dorsal cochlear nucleus of unanesthetized, decerebrate gerbils. (49/1552)

In an effort to establish relationships between cell physiology and morphology in the dorsal cochlear nucleus (DCN), intracellular single-unit recording and marking experiments were conducted on decerebrate gerbils using horseradish peroxidase (HRP)- or neurobiotin-filled micropipettes. Intracellular responses to acoustic (tone and broadband noise bursts) and electric current-pulse stimuli were recorded and associated with cell morphology. Units were classified according to the response map scheme (type I to type V). Results from 19 identified neurons, including 13 fusiform cells, 2 giant cells, and 4 cartwheel cells, reveal correlations between cell morphology of these neurons and their acoustic responses. Most fusiform cells (8/13) are associated with type III unit response properties. A subset of fusiform cells was type I/III units (2), type III-i units (2), and a type IV-T unit. The giant cells were associated with type IV-i unit response properties. Cartwheel cells all had weak acoustic responses that were difficult to classify. Some measures of membrane properties also were correlated with cell morphology but to a lesser degree. Giant cells and all but one fusiform cell fired only simple action potentials (APs), whereas all cartwheel cells discharged complex APs. Giant and fusiform cells all had monotonic rate versus current level curves, whereas cartwheel cells had nonmonotonic curves. This implies that inhibitory acoustic responses, resulting in nonmonotonic rate versus sound level curves, are due to local inhibitory interactions rather than strictly to membrane properties. A complex-spiking fusiform cell with type III unit properties suggests that cartwheel cells are not the only complex-spiking cells in DCN. The diverse response properties of the DCN's fusiform cells suggests that they are very sensitive to the specific complement of excitatory and inhibitory inputs they receive.  (+info)

Impact of obesity and leptin treatment on adipocyte gene expression in Psammomys obesus. (50/1552)

We examined the effects of leptin treatment on the expression of key genes in adipocyte metabolism in Psammomys obesus (P. obesus), a polygenic rodent model of obesity. Lean and obese P. obesus were given three daily intraperitoneal injections of either saline or leptin (total of 45 mg/kg per day) for 7 days. In lean animals, leptin treatment led to reductions in food intake, body weight and fat mass. Pair-fed animals matched for the reduction in food intake of the lean leptin-treated animals demonstrated similar reductions in body weight and fat mass. In obese P. obesus, leptin treatment failed to have any effect on body weight or body fat mass, indicating leptin resistance. Lipoprotein lipase, hormone-sensitive lipase and peroxisome proliferator activated receptor gamma 2 mRNA levels were significantly reduced in lean leptin-treated animals, whereas pair-fed animals were similar to lean controls. Uncoupling protein 2 and glycerol phosphate acyltransferase were also reduced in the lean leptin-treated animals, but not significantly so. Obese animals did not show any gene expression changes after leptin treatment. In conclusion, high circulating concentrations of leptin in lean P. obesus resulted in decreased gene expression of a number of key lipid enzymes, independent of changes in food intake, body weight and fat mass. These effects of leptin were not found in obese P. obesus.  (+info)

Pre-ischaemic administration of procaine suppresses ischaemic glutamate release and reduces neuronal damage in the gerbil hippocampus. (51/1552)

The effects of intracerebroventricular administration of procaine 2 mumol on ischaemic release of neurotransmitter amino acids in the gerbil hippocampal CAI region were investigated using a microdialysis-high-performance liquid chromatography procedure. Histological outcome was examined by comparing delayed neuronal death between animals treated with procaine before ischaemia and animals treated after ischaemia. Transient forebrain ischaemia for 3 min produced increases in dialysate amino acid concentrations. Aspartate, glutamate and glycine reached 331%, 394% and 233% of pre-ischaemic values. Basal concentrations were restored immediately by reperfusion. Pre-ischaemic administration of procaine suppressed peak release and improved histological outcome. However, post-ischaemic administration did not protect against ischaemic neuronal death. Improvement in ischaemic neuronal damage by pre-ischaemic administration of procaine may be related to suppression of excitatory amino acid release.  (+info)

Role of Streptococcus pneumoniae and Haemophilus influenzae in the development of acute otitis media and otitis media with effusion in a gerbil model. (52/1552)

The efficacy of amoxicillin/clavulanate and cefuroxime was determined in a gerbil model of otitis media with a mixed Streptococcus pneumoniae plus Haemophilus influenzae middle ear (ME) infection. Results were compared with those obtained in a previous single H. influenzae model. All untreated animals inoculated with the mixed inoculum developed acute otitis media (AOM), whereas 86.7% of those inoculated with H. influenzae developed otitis media with effusion (OME). Antibiotics eradicated H. influenzae from the ME more efficiently in AOM than in OME, and this difference was highly significant (P80% of animals developed culture-negative OME.  (+info)

The protease thrombin is an endogenous mediator of hippocampal neuroprotection against ischemia at low concentrations but causes degeneration at high concentrations. (53/1552)

We have considered the extracellular serine protease thrombin and its receptor as endogenous mediators of neuronal protection against brain ischemia. Exposure of gerbils to prior mild ischemic insults, here two relatively short-lasting occlusions (2 min) of both common carotid arteries applied at 1-day intervals 2 days before a severe occlusion (6 min), caused a robust ischemic tolerance of hippocampal CA1 neurons. This resistance was impaired if the specific thrombin inhibitor hirudin was injected intracerebroventricularly before each short-lasting insult. Thus, efficient native neuroprotective mechanisms exist and endogenous thrombin seems to be involved therein. In vitro experiments using organotypic slice cultures of rat hippocampus revealed that thrombin can have protective but also deleterious effects on hippocampal CA1 neurons. Low concentrations of thrombin (50 pM, 0.01 unit/ml) or of a synthetic thrombin receptor agonist (10 microM) induced significant neuroprotection against experimental ischemia. In contrast, 50 nM (10 units/ml) thrombin decreased further the reduced neuronal survival that follows the deprivation of oxygen and glucose, and 500 nM even caused neuronal cell death by itself. Degenerative thrombin actions also might be relevant in vivo, because hirudin increased the number of surviving neurons when applied before a 6-min occlusion. Among the thrombin concentrations tested, 50 pM induced intracellular Ca(2+) spikes in fura-2-loaded CA1 neurons whereas higher concentrations caused a sustained Ca(2+) elevation. Thus, distinct Ca(2+) signals may define whether or not thrombin initiates protection. Taken together, in vivo and in vitro data suggest that thrombin can determine neuronal cell death or survival after brain ischemia.  (+info)

Afferent regulation of inhibitory synaptic transmission in the developing auditory midbrain. (54/1552)

To determine whether afferent innervation regulates the strength of inhibitory connections in the gerbil auditory midbrain, both cochleas were surgically removed in postnatal day 7 animals, before sound-driven activity is first observed. Inhibitory synaptic currents were measured in a brain slice preparation 1-7 d after the ablations. Whole-cell and gramicidin-perforated patch recordings were obtained from inferior colliculus neurons, and IPSCs were evoked by stimulation of the commissure of the inferior colliculus (CIC) or the ipsilateral lateral lemniscus (LL) in the presence of kynurenic acid. Deafferentation led to a 24 mV depolarizing shift in the IPSC equilibrium potential within 1 d of deafferentation. As a consequence, there was a large reduction of IPSC amplitude at a holding potential of -20 mV in neurons from bilaterally ablated animals. Furthermore, both afferent pathways displayed a 50% reduction of the inhibitory synaptic conductance after deafferentation, indicating that driving force was not solely responsible for the decline in IPSC amplitude. When paired pulses were delivered to the LL or CIC pathway in control neurons, the evoked IPSCs exhibited facilitation. However, paired pulse facilitation was nearly eliminated after deafferentation. Thus, normal innervation affects inhibitory synaptic strength by regulating postsynaptic chloride homeostasis and presynaptic transmitter release properties.  (+info)

The metabolism of clomethiazole in gerbils and the neuroprotective and sedative activity of the metabolites. (55/1552)

A single dose of clomethiazole (600 micromol kg(-1) i.p.) has previously been shown to be neuroprotective in the gerbil model of global ischaemia. In gerbils, clomethiazole (600 micromol kg(-1)) injection produced a rapid appearance (peak within 5 min) of drug in plasma and brain and similar clearance (plasma t(1/2): 40 min) from both tissues. The peak brain concentration (226+/-56 nmol g(-1)) was 40% higher than plasma. One major metabolite, 5-(1-hydroxyethyl-2-chloro)-4-methylthiazole (NLA-715) and two minor metabolites 5-(1-hydroxyethyl)-4-methylthiazole (NLA-272) and 5-acetyl-4-methylthiazole (NLA-511) were detected in plasma and brain. Evidence suggested that clomethiazole is metabolized directly to both NLA-715 and NLA-272. Injection of NLA-715, NLA-272 or NLA-511 (each at 600 micromol kg(-1)) produced brain concentrations respectively 2.2, 38 and 92 times greater than seen after clomethiazole (600 micromol kg(-1)). Clomethiazole (600 micromol kg(-1)) injected 60 min after a 5 min bilateral carotid artery occlusion in gerbils attenuated the ischaemia-induced degeneration of the hippocampus by approximately 70%. The metabolites were not neuroprotective at this dose. In mice, clomethiazole (600 micromol kg(-1)) produced peak plasma and brain concentrations approximately 100% higher than in gerbils, drug concentrations in several brain regions were similar but 35% higher than plasma. Clomethiazole (ED(50): 180 micromol kg(-1)) and NLA-715 (ED(50): 240 micromol kg(-1)) inhibited spontaneous locomotor activity. The other metabolites were not sedative (ED(50) >600 micromol kg(-1)). These data suggest that the neuroprotective action of clomethiazole results from an action of the parent compound and that NLA-715 contributes to the sedative activity of the drug. British Journal of Pharmacology (2000) 129, 95 - 100  (+info)

Effects of dizocilpine pretreatment on parvalbumin immunoreactivity and Fos expression after cerebral ischemia in the hippocampus of the Mongolian gerbil. (56/1552)

The mechanisms of ischemic neuronal death have been focused on glutamate receptor activation and subsequent elevation of intracellular Ca2+ concentration. The purpose of this study was to evaluate the effects of dizocilpine, an NMDA receptor antagonist, pretreatment on Fos expression and parvalbumin (PV, calcium binding protein) immunoreactivity in the hippocampus of the mongolian gerbil after global ischemic insults. The number of PV-immunoreactive (PV-ir) neurons in CA1 were significantly decreased from 1 day after cerebral ischemia, while dizocilpine pretreatment completely suppressed the loss of PV-ir neurons in CA1. Dizocilpine pretreatment also protected the structural loss of microtubule-associated protein 2 immunoreactivity in CA1 after ischemic insults. In addition, dizocilpine pretreatment increased Fos expression in both hippocampal CA3 and CA4 after 3 hr ischemic reperfusion as compared to that of the saline pretreated group. Subsequently, the Fos-defined cellular activity of PV-ir neurons was slightly increased by dizocilpine pretreatment in the hippocampal area. This study demonstrated that NMDA receptor mediated calcium influx was associated with the loss of PV-ir neurons in CA1 hippocampal region, and that dizocilpine pretreatment increased Fos expression and the neuronal activity of PV-ir neurons in the non-vulnerable region of hippocampus after cerebral ischemia. Based on this data, we conclude that the protective effect of dizocilpine may be induced by the regulation of calcium overload, or by the upregulation of a neuroregenerative initiator such as Fos protein.  (+info)