Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. th. (17/190)

Five hydrocarbon-oxidizing strains were isolated from formation waters of oilfields in Russia, Kazakhstan and China. These strains were moderately thermophilic, neutrophilic, motile, spore-forming rods, aerobic or facultatively anaerobic. The G+C content of their DNA ranged from 49.7 to 52.3 mol%. The major isoprenoid quinone was menaquinone-7; cellular fatty acid profiles consisted of significant amounts of iso-15:0, iso-16:0 and iso-17:0 fatty acids (61.7-86.8% of the total). Based on data from 16S rDNA analysis and DNA-DNA hybridization, the subsurface isolates could be divided into two groups, one of which consisted of strains UT and X and the other of which consisted of strains K, Sam and 34T. The new strains exhibited a close phylogenetic relationship to thermophilic bacilli of 'Group 5' of Ash et al. [Ash, C., Farrow, J. A. E., Wallbanks, S. & Collins, M. D. (1991). Lett Appl Microbiol 13, 202-206] and a set of corresponding signature positions of 16S rRNA. Comparative analysis of the 16S rDNA sequences and fatty acid compositions of the novel isolates and established species of thermophilic bacilli indicated that the subsurface strains represent two new species within a new genus, for which the names Geobacillus subterraneus gen. nov., sp. nov., and Geobacillus uzenensis sp. nov. are proposed. It is also proposed that Bacillus stearothermophilus, Bacillus thermoleovorans, Bacillus thermocatenulatus, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans be transferred to this new genus, with Geobacillus stearothermophilus (formerly Bacillus stearothermophilus) as the type species.  (+info)

Hydrogenophilus hirschii sp. nov., a novel thermophilic hydrogen-oxidizing beta-proteobacterium isolated from Yellowstone National Park. (18/190)

A novel thermophilic hydrogen-oxidizing bacterium, Hydrogenophilus hirschii Yel5aT (= DSM 11420T = JCM 10831T) has been isolated from the Angel Terrace Spring, Yellowstone National Park. The isolate was rod-shaped (1.0-1.5 x 0.8 microm) with a polarly inserted flagellum. Cells grew chemolithoautotrophically under an atmosphere of H2 and CO2 (80:20) in the presence of low concentrations of O2 (optimum 2.5%). Organotrophic growth occurred on complex organic substrates such as yeast extract and peptone and on organic acids. Carbohydrates and amino acids were not utilized. The strain grew between 50 and 67 degrees C; optimal growth occurred at a temperature of 63 degrees C. The pH optimum was 6.5. NaCl inhibited growth at concentrations higher than 1.5%. The major respiratory lipoquinone was ubiquinone-8. Analysis of fatty acids of Yel5aT revealed a straight-chain saturated C16:0 as the major component followed by cyclo C17:0 and cyclo C19:0. The G+C content of total DNA was 61 mol%. Phylogenetic analysis placed the strain in the beta-proteobacteria. The 16S rDNA sequence of strain Yel5aT was related to that of Hydrogenophilus thermoluteolus. To our knowledge, Hydrogenophilus hirschii is the most thermophilic micro-organism found within the proteobacteria that grows in the temperature range 50-68 degrees C.  (+info)

Attached and unattached microbial communities in a simulated basalt aquifer under fracture- and porous-flow conditions. (19/190)

Bench scale column studies were used to examine the partitioning of microorganisms between groundwater and a geologic medium and to examine the effect of hydrogeology (i.e., porous- versus fracture-flow) on organism partitioning. Replicated columns were constructed with intact basalt core segments that contained natural fractures and with the same basalt crushed into particles. The columns were perfused with groundwater, and upon reaching a steady state, the columns were sacrificed and the attached and unattached communities were analyzed by multiple approaches. The analyses included the total number of cells, the phylogenetic affiliation of the cells (i.e., the alpha, beta, and gamma subclasses of the class Proteobacteria and gram positives with high G+C DNA content) by fluorescent in situ hybridization (FISH), number and taxonomic affiliation by fatty acid methyl ester profiles of culturable heterotrophs, most-probable-number estimates of methanotrophs and phenol oxidizers, and whole-community sole carbon source utilization patterns from Biolog GN microplates. In the packed columns, about 99% of the total biomass (per cubic centimeter of porous medium) was attached to the geologic medium. Lack of equitable units precluded a comparison of attached and unattached biomasses in the fractured columns where the attached biomass was expressed per unit of surface area. Compositional differences in the attached and unattached communities were evidenced by (i) the recovery of Pseudomonas stutzeri, an Enterococcus sp., and Bacillus psychrophilus from the groundwater and not from the basalt, (ii) differences between community carbon source utilization patterns, and (iii) the relative abundances of different phylogenetic groups estimated by FISH in both column types. In the packed columns, attached communities were depleted of members of the alpha- and beta-Proteobacteria subclasses in comparison to those in the corresponding groundwater. In the fractured columns, attached communities were enriched in gram-positive Bacteria and gamma-Proteobacteria and depleted of beta-Proteobacteria, in comparison to those in the corresponding groundwater. Segregation of populations and their activities, possibly modified by attachment to geologic media, may influence contaminant fate and transport in the subsurface and impact other in situ applications.  (+info)

Aeolian dust in Colorado Plateau soils: nutrient inputs and recent change in source. (20/190)

Aeolian dust (windblown silt and clay) is an important component in arid-land ecosystems because it may contribute to soil formation and furnish essential nutrients. Few geologic surfaces, however, have been characterized with respect to dust-accumulation history and resultant nutrient enrichment. We have developed a combination of methods to identify the presence of aeolian dust in arid regions and to evaluate the roles of this dust in ecosystem processes. Unconsolidated sandy sediment on isolated surfaces in the Canyonlands region of the Colorado Plateau differs greatly in mineralogical and chemical composition from associated bedrock, mainly aeolian sandstone. Detrital magnetite in the surficial deposits produces moderately high values of magnetic susceptibility, but magnetite is absent in nearby bedrock. A component of the surficial deposits must be aeolian to account for the abundance of magnetite, which formed originally in far-distant igneous rocks. Particle-size analysis suggests that the aeolian dust component is typically as much as 20-30%. Dust inputs have enriched the sediments in many elements, including P, Mg, Na, K, and Mo, as well as Ca, at sites where bedrock lacks calcite cement. Soil-surface biologic crusts are effective dust traps that apparently record a change in dust sources over the past several decades. Some of the recently fallen dust may result from human disturbance of land surfaces that are far from the Canyonlands, such as the Mojave Desert. Some land-use practices in the study area have the potential to deplete soil fertility by means of wind-erosion removal of aeolian silt.  (+info)

Feedback control of the rate of peat formation. (21/190)

The role of peatlands in the global carbon cycle is confounded by two inconsistencies. First, peatlands have been a large reservoir for carbon sequestered in the past, but may be either net sources or net sinks at present. Second, long-term rates of peat accumulation (and hence carbon sequestration) are surprisingly steady, despite great variability in the short-term rates of peat formation. Here, we present a feedback mechanism that can explain how fine-scale and short-term variability in peat-forming processes is constrained to give steady rates of peat accumulation over longer time-scales. The feedback mechanism depends on a humpbacked relationship between the rate of peat formation and the thickness of the aerobic surface layer (the acrotelm), such that individual microforms (hummocks, lawns, hollows and pools) expand or contract vertically in response to fluctuations in the position of the water table. Hummocks (but not hollows) 'evolve' to a steady state where changes in acrotelm thickness compensate for climate-mediated variations in surface wetness. With long-term growth of a topographically confined peat deposit, the steady state gradually shifts to a thicker acrotelm (i.e. taller hummocks) and lower rates of peat formation and carbon sequestration.  (+info)

Detection of macro-ecological patterns in South American hummingbirds is affected by spatial scale. (22/190)

Scale is widely recognized as a fundamental conceptual problem in biology, but the question of whether species-richness patterns vary with scale is often ignored in macro-ecological analyses, despite the increasing application of such data in international conservation programmes. We tested for scaling effects in species-richness gradients with spatially scaled data for 241 species of South American hummingbirds (Trochilidae). Analyses revealed that scale matters above and beyond the effect of quadrat area. Species richness was positively correlated with latitude and topographical relief at ten different spatial scales spanning two orders of magnitude (ca. 12,300 to ca. 1,225,000 km2). Surprisingly, when the influence of topography was removed, the conditional variation in species richness explained by latitude fell precipitously to insignificance at coarser spatial scales. The perception of macro-ecological pattern thus depends directly upon the scale of analysis. Although our results suggest there is no single correct scale for macro-ecological analyses, the averaging effect of quadrat sampling at coarser geographical scales obscures the fine structure of species-richness gradients and localized richness peaks, decreasing the power of statistical tests to discriminate the causal agents of regional richness gradients. Ideally, the scale of analysis should be varied systematically to provide the optimal resolution of macro-ecological pattern.  (+info)

Biomass of the cryptoendolithic microbiota from the Antarctic desert. (23/190)

Extractable lipid phosphate was used to determine the biomass of the cryptoendolithic microbiota that colonizes sandstone rocks in the Ross Desert region of Antarctica. The mean amount of lipid phosphate was 0.053 micromole/cm2 (n = 9), which equals 2.54 g of C per m2 (range, 1.92 to 3.26 g of C per m2) of biomass in the biotic zone of these rocks. The turnover of phospholipids was comparable to that of temperate sediments and soils (t1/2, 6 to 9 days) at 0 degrees C and a light intensity of 305 micromoles of photons per m2 per s, indicating that this was a good method to measure viable biomass. The biomass was 0.3 to 9.6% of the total carbon content of the biotic zone and was about 2 orders of magnitude smaller than the epilithic lichen dry weight at a location some 7 degrees north in latitude. The cryptoendolithic microbiota had a uniform density throughout the biotic zone under the rock surface. The results indicate that the cryptoendolithic microbial biomass is small but viable in this unique, extreme ecosystem.  (+info)

Carbon metabolism of the cryptoendolithic microbiota from the Antarctic desert. (24/190)

The carbon metabolism of the cryptoendolithic microbiota of sandstones from the Ross Desert of Antarctica was studied in situ and in vitro. Organic and inorganic carbon compounds were metabolized by the microbiota, with bicarbonate incorporation into community lipids occurring primarily in the light. Light intensity affected the photometabolism of carbon with a photosynthesis-intensity response optimum at about 200 to 300 micromoles of photons per m2 per s. Photosynthesis was also affected by temperature, with a minimum activity at -5 degrees C, an optimum activity at 15 degrees C, and complete inhibition at 35 degrees C, indicating that the cryptoendolithic community was psychrophilic. The primary source of CO2 for photosynthesis in situ was the atmosphere. CO2 may also be photometabolized by using the carbon produced from respiration within the endolithic community. Photosynthesis occurred maximally when the microbiota was wet with liquid water and to a lesser extent in a humid atmosphere. This simple microbial community, therefore, exists under extremes of water, light, and temperature stress which affect and control its metabolism.  (+info)