The Archean sulfur cycle and the early history of atmospheric oxygen. (65/2414)

The isotope record of sedimentary sulfides can help resolve the history of oxygen accumulation into the atmosphere. We measured sulfur isotopic fractionation during microbial sulfate reduction up to 88 degrees C and show how sulfate reduction rate influences the preservation of biological fractionations in sediments. The sedimentary sulfur isotope record suggests low concentrations of seawater sulfate and atmospheric oxygen in the early Archean (3.4 to 2.8 billion years ago). The accumulation of oxygen and sulfate began later, in the early Proterozoic (2.5 to 0.54 billion years ago).  (+info)

Viral density and virus-to-bacterium ratio in deep-sea sediments of the Eastern Mediterranean. (66/2414)

Viruses are now recognized as a key component in pelagic systems, but their role in marine sediment has yet to be assessed. In this study bacterial and viral densities were determined at nine deep-sea stations selected from three main sites (i.e., the Sporades Basin, the Cretan Sea, and the Ierapetra Trench at depths of 1,232, 1,840, and 4,235 m, respectively) of the Eastern Mediterranean. The three areas were characterized by different phytopigment and biopolymeric carbon concentrations and by changes in the protein and carbohydrate pools. A gradient of increasing trophic conditions was observed from the Sporades Basin (North Aegean) to the Ierapetra Trench (South Aegean). Viral densities (ranging from 1 x 10(9) to 2 x 10(9) viruses ml of sediment(-1)) were significantly correlated to bacterial densities (n = 9, r(2) = 0.647) and reached values up to 3 orders of magnitude higher than those generally reported for the water column. However, the virus-to-bacterium density ratio in deep-sea sediments was about 1 order of magnitude lower (range of 2 to 5, with a modal value of 2.6) than in pelagic environments. Virus density decreased vertically with depth in sediment cores at all stations and was below detection limits at the 10-cm depth of the abyssal sediments of the Ierapetra Trench. Virus density in the sediment apparently reflected a gradient of particle fluxes and trophic conditions, displaying the highest values in the Sporades Basin. The low virus-to-bacterium ratios and their inverse relationship with station depth suggest that the role played by viruses in controlling deep-sea benthic bacterial assemblages and biogeochemical cycles is less relevant than in pelagic systems.  (+info)

Horizontal heterogeneity of denitrifying bacterial communities in marine sediments by terminal restriction fragment length polymorphism analysis. (67/2414)

Although it is widely believed that horizontal patchiness exists in microbial sediment communities, determining the extent of variability or the particular members of the bacterial community which account for the observed differences among sites at various scales has not been routinely demonstrated. In this study, horizontal heterogeneity was examined in time and space for denitrifying bacteria in continental shelf sediments off Tuckerton, N.J., at the Rutgers University Long-Term Ecosystem Observatory (LEO-15). Characterization of the denitrifying community was done using PCR amplification of the nitrous oxide reductase (nosZ) gene combined with terminal restriction fragment length polymorphism analysis. Spatial scales from centimeters to kilometers were examined, while temporal variation was assayed over the course of 1995 to 1996. Sorenson's indices (pairwise similarity values) were calculated to permit comparison between samples. The similarities of benthic denitrifiers ranged from 0.80 to 0.85 for centimeter scale comparisons, from 0.52 to 0.79 for meter level comparisons, and from 0.23 to 0.53 for kilometer scale comparisons. Sorenson's indices for temporal comparisons varied from 0.12 to 0.74. A cluster analysis of the similarity values indicated that the composition of the denitrifier assemblages varied most significantly at the kilometer scale and between seasons at individual stations. Specific nosZ genes were identified which varied at centimeter, meter, or kilometer scales and may be associated with variability in meio- or macrofaunal abundance (centimeter scale), bottom topography (meter scale), or sediment characteristics (kilometer scale).  (+info)

Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in pacific northwest marine sediment communities. (68/2414)

Genetic heterogeneity of denitrifying bacteria in sediment samples from Puget Sound and two sites on the Washington continental margin was studied by PCR approaches amplifying nirK and nirS genes. These structurally different but functionally equivalent single-copy genes coding for nitrite reductases, a key enzyme of the denitrification process, were used as a molecular marker for denitrifying bacteria. nirS sequences could be amplified from samples of both sampling sites, whereas nirK sequences were detected only in samples from the Washington margin. To assess the underlying nir gene structure, PCR products of both genes were cloned and screened by restriction fragment length polymorphism (RFLP). Rarefraction analysis revealed a high level of diversity especially for nirS clones from Puget Sound and a slightly lower level of diversity for nirK and nirS clones from the Washington margin. One group dominated within nirK clones, but no dominance and only a few redundant clones were seen between sediment samples for nirS clones in both habitats. Hybridization and sequencing confirmed that all but one of the 228 putative nirS clones were nirS with levels of nucleotide identities as low as 45.3%. Phylogenetic analysis grouped nirS clones into three distinct subclusters within the nirS gene tree which corresponded to the two habitats from which they were obtained. These sequences had little relationship to any strain with known nirS sequences or to isolates (mostly close relatives of Pseudomonas stutzeri) from the Washington margin sediment samples. nirK clones were more closely related to each other than were the nirS clones, with 78.6% and higher nucleotide identities; clones showing only weak hybridization signals were not related to known nirK sequences. All nirK clones were also grouped into a distinct cluster which could not be placed with any strain with known nirK sequences. These findings show a very high diversity of nir sequences within small samples and that these novel nir clusters, some very divergent from known sequences, are not known in cultivated denitrifiers.  (+info)

Age of Neoproterozoic bilatarian body and trace fossils, White Sea, Russia: implications for metazoan evolution. (69/2414)

A uranium-lead zircon age for a volcanic ash interstratified with fossil-bearing, shallow marine siliciclastic rocks in the Zimnie Gory section of the White Sea region indicates that a diverse assemblage of body and trace fossils occurred before 555.3 +/- 0.3 million years ago. This age is a minimum for the oldest well-documented triploblastic bilaterian Kimberella. It also makes co-occurring trace fossils the oldest that are reliably dated. This determination of age implies that there is no simple relation between Ediacaran diversity and the carbon isotopic composition of Neoproterozoic seawater.  (+info)

Earliest Pleistocene hominid cranial remains from Dmanisi, Republic of Georgia: taxonomy, geological setting, and age. (70/2414)

Archaeological excavations at the site of Dmanisi in the Republic of Georgia have uncovered two partial early Pleistocene hominid crania. The new fossils consist of a relatively complete cranium and a second relatively complete calvaria from the same site and stratigraphic unit that yielded a hominid mandible in 1991. In contrast with the uncertain taxonomic affinity of the mandible, the new fossils are comparable in size and morphology with Homo ergaster from Koobi Fora, Kenya. Paleontological, archaeological, geochronological, and paleomagnetic data from Dmanisi all indicate an earliest Pleistocene age of about 1.7 million years ago, supporting correlation of the new specimens with the Koobi Fora fossils. The Dmanisi fossils, in contrast with Pleistocene hominids from Western Europe and Eastern Asia, show clear African affinity and may represent the species that first migrated out of Africa.  (+info)

Methanosarcina semesiae sp. nov., a dimethylsulfide-utilizing methanogen from mangrove sediment. (71/2414)

Methanosarcina semesiae MD1T (T = type strain), a novel obligately methylotrophic methanogenic archaeon is described. Strain MD1T was isolated from an enrichment on dimethylsulfide inoculated with mangrove sediment. The cells were irregularly coccoid, non-motile, 1.4+/-0.2 microm in diameter and stained Gram-positive. The catabolic substrates used included dimethylsulfide, methanethiol, methanol and methylated amines, but not acetate, formate, H2/CO2 or a combination of these substrates. When cells grown on dimethylsulfide were transferred to trimethylamine or methanol and vice versa, a lag phase was observed. The same lag phase occurred when cells grown on trimethylamine were transferred to methanol and vice versa, indicating that for each substrate different enzymes were induced. Fastest growth occurred within a temperature range of 30-35 degrees C and a pH of 6.5-7.5. Both Na+ and Mg2+ were required for growth, with maximum growth rates at 200-600 mM Na+ and 20-100 mM Mg2+. The cells exhibited specific growth rates (h-1) of 0.07+/-0.02, 0.15+/-0.04 and 0.18-/+0.05 on dimethylsulfide, methanol and trimethylamine, respectively. Analysis of the 16S rRNA gene sequence showed that strain MD1T was phylogenetically closely related to members of the genus Methanosarcina, but clearly differed from all described species of this genus (94-97% sequence similarity).  (+info)

Sulfate-reducing bacteria methylate mercury at variable rates in pure culture and in marine sediments. (72/2414)

Differences in methylmercury (CH(3)Hg) production normalized to the sulfate reduction rate (SRR) in various species of sulfate-reducing bacteria (SRB) were quantified in pure cultures and in marine sediment slurries in order to determine if SRB strains which differ phylogenetically methylate mercury (Hg) at similar rates. Cultures representing five genera of the SRB (Desulfovibrio desulfuricans, Desulfobulbus propionicus, Desulfococcus multivorans, Desulfobacter sp. strain BG-8, and Desulfobacterium sp. strain BG-33) were grown in a strictly anoxic, minimal medium that received a dose of inorganic Hg 120 h after inoculation. The mercury methylation rates (MMR) normalized per cell were up to 3 orders of magnitude higher in pure cultures of members of SRB groups capable of acetate utilization (e.g., the family Desulfobacteriaceae) than in pure cultures of members of groups that are not able to use acetate (e.g., the family Desulfovibrionaceae). Little or no Hg methylation was observed in cultures of Desulfobacterium or Desulfovibrio strains in the absence of sulfate, indicating that Hg methylation was coupled to respiration in these strains. Mercury methylation, sulfate reduction, and the identities of sulfate-reducing bacteria in marine sediment slurries were also studied. Sulfate-reducing consortia were identified by using group-specific oligonucleotide probes that targeted the 16S rRNA molecule. Acetate-amended slurries, which were dominated by members of the Desulfobacterium and Desulfobacter groups, exhibited a pronounced ability to methylate Hg when the MMR were normalized to the SRR, while lactate-amended and control slurries had normalized MMR that were not statistically different. Collectively, the results of pure-culture and amended-sediment experiments suggest that members of the family Desulfobacteriaceae have a greater potential to methylate Hg than members of the family Desulfovibrionaceae have when the MMR are normalized to the SRR. Hg methylation potential may be related to genetic composition and/or carbon metabolism in the SRB. Furthermore, we found that in marine sediments that are rich in organic matter and dissolved sulfide rapid CH(3)Hg accumulation is coupled to rapid sulfate reduction. The observations described above have broad implications for understanding the control of CH(3)Hg formation and for developing remediation strategies for Hg-contaminated sediments.  (+info)