Structure of a novel c7-type three-heme cytochrome domain from a multidomain cytochrome c polymer. (9/179)

The structure of a novel c(7)-type cytochrome domain that has two bishistidine coordinated hemes and one heme with histidine, methionine coordination (where the sixth ligand is a methionine residue) was determined at 1.7 A resolution. This domain is a representative of domains that form three polymers encoded by the Geobacter sulfurreducens genome. Two of these polymers consist of four and one protein of nine c(7)-type domains with a total of 12 and 27 hemes, respectively. Four individual domains (termed A, B, C, and D) from one such multiheme cytochrome c (ORF03300) were cloned and expressed in Escherichia coli. The domain C produced diffraction quality crystals from 2.4 M sodium malonate (pH 7). The structure was solved by MAD method and refined to an R-factor of 19.5% and R-free of 21.8%. Unlike the two c(7) molecules with known structures, one from G. sulfurreducens (PpcA) and one from Desulfuromonas acetoxidans where all three hemes are bishistidine coordinated, this domain contains a heme which is coordinated by a methionine and a histidine residue. As a result, the corresponding heme could have a higher potential than the other two hemes. The apparent midpoint reduction potential, E(app), of domain C is -105 mV, 50 mV higher than that of PpcA.  (+info)

The RpoS sigma factor in the dissimilatory Fe(III)-reducing bacterium Geobacter sulfurreducens. (10/179)

Geobacter sulfurreducens RpoS sigma factor was shown to contribute to survival in stationary phase and upon oxygen exposure. Furthermore, a mutation in rpoS decreased the rate of reduction of insoluble Fe(III) but not of soluble forms of iron. This study suggests that RpoS plays a role in regulating metabolism of Geobacter under suboptimal conditions in subsurface environments.  (+info)

Change in bacterial community structure during in situ biostimulation of subsurface sediment cocontaminated with uranium and nitrate. (11/179)

Previous studies have demonstrated that metal-reducing microorganisms can effectively promote the precipitation and removal of uranium from contaminated groundwater. Microbial communities were stimulated in the acidic subsurface by pH neutralization and addition of an electron donor to wells. In single-well push-pull tests at a number of treated sites, nitrate, Fe(III), and uranium were extensively reduced and electron donors (glucose, ethanol) were consumed. Examination of sediment chemistry in cores sampled immediately adjacent to treated wells 3.5 months after treatment revealed that sediment pH increased substantially (by 1 to 2 pH units) while nitrate was largely depleted. A large diversity of 16S rRNA gene sequences were retrieved from subsurface sediments, including species from the alpha, beta, delta, and gamma subdivisions of the class Proteobacteria, as well as low- and high-G+C gram-positive species. Following in situ biostimulation of microbial communities within contaminated sediments, sequences related to previously cultured metal-reducing delta-Proteobacteria increased from 5% to nearly 40% of the clone libraries. Quantitative PCR revealed that Geobacter-type 16S rRNA gene sequences increased in biostimulated sediments by 1 to 2 orders of magnitude at two of the four sites tested. Evidence from the quantitative PCR analysis corroborated information obtained from 16S rRNA gene clone libraries, indicating that members of the delta-Proteobacteria subdivision, including Anaeromyxobacter dehalogenans-related and Geobacter-related sequences, are important metal-reducing organisms in acidic subsurface sediments. This study provides the first cultivation-independent analysis of the change in metal-reducing microbial communities in subsurface sediments during an in situ bioremediation experiment.  (+info)

Direct correlation between rates of anaerobic respiration and levels of mRNA for key respiratory genes in Geobacter sulfurreducens. (12/179)

The predominance of Geobacter species in environments in which Fe(III) reduction is important has suggested that Fe(III) reduction rates might be estimated in Geobacter-dominated environments by assessing in situ activity with molecular techniques. To determine whether mRNA levels of key respiratory genes might be correlated with respiration rates in Geobacter sulfurreducens, studies were conducted with fumarate as the electron acceptor and acetate as the limiting electron donor in anaerobic continuous cultures. Levels of mRNA for a fumarate reductase gene, frdA, quantified by real-time reverse transcription-PCR were directly correlated with fumarate reduction rates. In similar studies with Fe(III) as the electron acceptor, mRNA levels for omcB, a gene for an outer membrane c-type cytochrome involved in Fe(III) reduction, were positively correlated with Fe(III) reduction rates. Levels of mRNA for frdA and omcB were also positively correlated with fumarate and Fe(III) reduction rates, respectively, when growth was limited by the availability of fumarate or Fe(III), but mRNA levels were higher than in acetate-limited cultures. Levels of mRNA for omcC, which encodes a c-type cytochrome highly similar to OmcB but not necessary for Fe(III) reduction, followed patterns different than those of omcB. This agrees with the previous finding that OmcC is not involved in Fe(III) reduction and suggests that changes in mRNA levels of omcB are related to its role in Fe(III) reduction. These results demonstrate that mRNA levels for respiratory genes might be used to estimate in situ Fe(III) reduction rates in Geobacter-dominated environments but suggest that information on environmental conditions and/or the metabolic state of Geobacter species is also required for accurate rate estimates.  (+info)

Comparison of 16S rRNA, nifD, recA, gyrB, rpoB and fusA genes within the family Geobacteraceae fam. nov. (13/179)

The sequences of five conserved genes, in addition to the 16S rRNA gene, were investigated in 30 members of the Geobacteraceae fam. nov. All members of the Geobacteraceae examined contained nifD, suggesting that they are capable of nitrogen fixation, which may explain their ability to compete effectively in nitrogen-poor subsurface environments undergoing remediation for petroleum or metal contamination. The phylogenies predicted from rpoB, gyrB, fusA, recA and nifD were generally in agreement with the phylogeny predicted from 16S rRNA gene sequences. Furthermore, phylogenetic analysis of concatemers constructed from all five protein-coding genes corresponded closely with the 16S rRNA gene-based phylogeny. This study demonstrated that the Geobacteraceae is a phylogenetically coherent family within the delta-subclass of the Proteobacteria that is composed of three distinct phylogenetic clusters: Geobacter, Desulfuromonas and Desulfuromusa. The sequence data provided here will make it possible to discriminate better between physiologically distinct members of the Geobacteraceae, such as Pelobacter propionicus and Geobacter species, in geobacteraceae-dominated microbial communities and greatly expands the potential to identify geobacteraceae sequences in libraries of environmental genomic DNA.  (+info)

Formation of tabular single-domain magnetite induced by Geobacter metallireducens GS-15. (14/179)

Distinct morphological characteristics of magnetite formed intracellularly by magnetic bacteria (magnetosome) are invoked as compelling evidence for biological activity on Earth and possibly on Mars. Crystals of magnetite produced extracellularly by a variety of bacteria including Geobacter metallireducens GS-15, thermophilic bacteria, and psychrotolerant bacteria are, however, traditionally not thought to have nearly as distinct morphologies. The size and shape of extracellular magnetite depend on the culture conditions and type of bacteria. Under typical CO(2)-rich culture conditions, GS-15 is known to produce superparamagnetic magnetite (crystal diameters of approximately <30 nm). In the current study, we were able to produce a unique form of tabular, single-domain magnetite under nontraditional (low-CO(2)) culture conditions. This magnetite has a distinct crystal habit and magnetic properties. This magnetite could be used as a biosignature to recognize ancient biological activities in terrestrial and extraterrestrial environments and also may be a major carrier of the magnetization in natural sediments.  (+info)

Properties of metabolic networks: structure versus function. (15/179)

Biological data from high-throughput technologies describing the network components (genes, proteins, metabolites) and their associated interactions have driven the reconstruction and study of structural (topological) properties of large-scale biological networks. In this article, we address the relation of the functional and structural properties by using extensively experimentally validated genome-scale metabolic network models to compute observable functional states of a microorganism and compare the "structure versus function" attributes of metabolic networks. It is observed that, functionally speaking, the essentiality of reactions in a node is not correlated with node connectivity as structural analyses of other biological networks have suggested. These findings are illustrated with the analysis of the genome-scale biochemical networks of three species with distinct modes of metabolism. These results also suggest fundamental differences among different biological networks arising out of their representation and functional constraints.  (+info)

In situ expression of nifD in Geobacteraceae in subsurface sediments. (16/179)

In order to determine whether the metabolic state of Geobacteraceae involved in bioremediation of subsurface sediments might be inferred from levels of mRNA for key genes, in situ expression of nifD, a highly conserved gene involved in nitrogen fixation, was investigated. When Geobacter sulfurreducens was grown without a source of fixed nitrogen in chemostats with acetate provided as the limiting electron donor and Fe(III) as the electron acceptor, levels of nifD transcripts were 4 to 5 orders of magnitude higher than in chemostat cultures provided with ammonium. In contrast, the number of transcripts of recA and the 16S rRNA gene were slightly lower in the absence of ammonium. The addition of acetate to organic- and nitrogen-poor subsurface sediments stimulated the growth of Geobacteraceae and Fe(III) reduction, as well as the expression of nifD in Geobacteraceae. Levels of nifD transcripts in Geobacteraceae decreased more than 100-fold within 2 days after the addition of 100 microM ammonium, while levels of recA and total bacterial 16S rRNA in Geobacteraceae remained relatively constant. Ammonium amendments had no effect on rates of Fe(III) reduction in acetate-amended sediments or toluene degradation in petroleum-contaminated sediments, suggesting that other factors, such as the rate that Geobacteraceae could access Fe(III) oxides, limited Fe(III) reduction. These results demonstrate that it is possible to monitor one aspect of the in situ metabolic state of Geobacteraceae species in subsurface sediments via analysis of mRNA levels, which is the first step toward a more global analysis of in situ gene expression related to nutrient status and stress response during bioremediation by Geobacteraceae.  (+info)