A novel subtilisin-like protease gene from Arabidopsis thaliana is expressed at sites of lateral root emergence. (25/2024)

Differential screening of a cDNA library for mRNA species that specifically accumulate during auxin-induced lateral root formation in Arabidopsis thaliana led to the isolation of the AIR3 cDNA clone. The corresponding single copy gene consists of 10 exons which encode a protein that possesses all the characteristics of subtilisin-like proteases. The promoter of the AIR3 gene was fused to the gusA (beta-glucuronidase) reporter gene and introduced into Arabidopsis. Expression was almost completely restricted to the outer layers of the parental root at sites of lateral root emergence and could be observed even before protrusion of the newly formed root tip. In the presence of external auxin, GUS activity was visible throughout the parts of the root that are competent for lateral root formation. By digesting structural proteins in the extracellular matrix of cells located above sites of lateral root formation, AIR3 might weaken cell-to-cell connections and thus facilitate lateral root emergence.  (+info)

Structure-function analyses of thrombomodulin by gene-targeting in mice: the cytoplasmic domain is not required for normal fetal development. (26/2024)

Thrombomodulin (TM) is a widely expressed glycoprotein receptor that plays a physiologically important role in maintaining normal hemostatic balance postnatally. Inactivation of the TM gene in mice results in embryonic lethality without thrombosis, suggesting that structures of TM not recognized to be involved in coagulation might be critical for normal fetal development. Therefore, the in vivo role of the cytoplasmic domain of TM was studied by using homologous recombination in ES cells to create mice that lack this region of TM (TMcyt/cyt). Cross-breeding of F1 TMwt/cyt mice (1 wild-type and 1 mutant allele) resulted in more than 300 healthy offspring with a normal Mendelian inheritance pattern of 25.7% TMwt/wt, 46.6% TMwt/cyt, and 27.7% TMcyt/cyt mice, indicating that the tail of TM is not necessary for normal fetal development. Phenotypic analyses showed that the TMcyt/cyt mice responded identically to their wild-type littermates after procoagulant, proinflammatory, and skin wound challenges. Plasma levels of plasminogen, plasminogen activator inhibitor 1 (PAI-1), and alpha2-antiplasmin were unaltered, but plasmin:alpha2-antiplasmin (PAP) levels were significantly lower in TMcyt/cyt mice than in TMwt/wt mice (0.46 +/- 0.2 and 1.99 +/- 0.1 ng/mL, respectively; P <.001). Tissue levels of TM antigen were also unaffected. However, functional levels of plasma TM in the TMcyt/cyt mice, as measured by thrombin-dependent activation of protein C, were significantly increased (P <.001). This supported the hypothesis that suppression in PAP levels may be due to augmented activation of thrombin-activatable fibrinolysis inhibitor (TAFI), with resultant inhibition of plasmin generation. In conclusion, these studies exclude the cytoplasmic domain of TM from playing a role in the early embryonic lethality of TM-null mice and support its function in regulating plasmin generation in plasma.  (+info)

Molecular cloning and structural and functional characterization of human cathepsin F, a new cysteine proteinase of the papain family with a long propeptide domain. (27/2024)

A cDNA encoding a new cysteine proteinase belonging to the papain family and called cathepsin F has been cloned from a human prostate cDNA library. This cDNA encodes a polypeptide of 484 amino acids, with the same domain organization as other cysteine proteinases, including a hydrophobic signal sequence, a prodomain, and a catalytic region. However, this propeptide domain is unusually long and distinguishes cathepsin F from other proteinases of the papain family. Cathepsin F also shows all structural motifs characteristic of these proteinases, including the essential cysteine residue of the active site. Consistent with these structural features, cathepsin F produced in Escherichia coli as a fusion protein with glutathione S-transferase degrades the synthetic peptide benzyloxycarbonyl-Phe-Arg-7-amido-4-methylcoumarin, a substrate commonly used for functional characterization of cysteine proteinases. Furthermore, this proteolytic activity is blocked by trans-epoxysuccinyl-L-leucylamido-(4-guanidino)butane, an inhibitor of cysteine proteinases. The gene encoding cathepsin F maps to chromosome 11q13, close to that encoding cathepsin W. Cathepsin F is widely expressed in human tissues, suggesting a role in normal protein catabolism. Northern blot analysis also revealed a significant level of expression in some cancer cell lines opening the possibility that this enzyme could be involved in degradative processes occurring during tumor progression.  (+info)

Identification of genetic determinants for the hemolytic activity of Streptococcus agalactiae by ISS1 transposition. (28/2024)

Streptococcus agalactiae is a poorly transformable bacterium and studies of molecular mechanisms are difficult due to the limitations of genetic tools. Employing the novel pGh9:ISS1 transposition vector we generated plasmid-based mutant libraries of S. agalactiae strains O90R and AC475 by random chromosomal integration. A screen for mutants with a nonhemolytic phenotype on sheep blood agar led to the identification of a genetic locus harboring several genes that are essential for the hemolytic function and pigment production of S. agalactiae. Nucleotide sequence analysis of nonhemolytic mutants revealed that four mutants had distinct insertion sites in a single genetic locus of 7 kb that was subsequently designated cyl. Eight different open reading frames were identified: cylX, cylD, cylG, acpC, cylZ, cylA, cylB, and cylE, coding for predicted proteins with molecular masses of 11, 33, 26, 11, 15, 35, 32, and 78 kDa, respectively. The deduced amino acid sequence of the protein encoded by cylA harbors a conserved ATP-binding cassette (ABC) motif, and the predicted proteins encoded by cylA and cylB have significant similarities to the nucleotide binding and transmembrane proteins of typical ABC transporter systems. Transcription analysis by reverse transcription-PCR suggests that cylX to cylE are part of an operon. The requirement of acpC and cylZABE for hemolysin production of S. agalactiae was confirmed either by targeted mutagenesis with the vector pGh5, complementation studies with pAT28, or analysis of insertion elements in naturally occurring nonhemolytic mutants.  (+info)

The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. (29/2024)

The irregular xylem3 (irx3) mutant of Arabidopsis has a severe deficiency in secondary cell wall cellulose deposition that leads to collapsed xylem cells. The irx3 mutation has been mapped to the top arm of chromosome V near the marker nga106. Expressed sequence tag clone 75G11, which exhibits sequence similarity to cellulose synthase, was found to be tightly linked to irx3, and genomic clones containing the gene corresponding to clone 75G11 complemented the irx3 mutation. Thus, the IRX3 gene encodes a cellulose synthase component that is specifically required for the synthesis of cellulose in the secondary cell wall. The irx3 mutant allele contains a stop codon that truncates the gene product by 168 amino acids, suggesting that this allele is null. Furthermore, in contrast to radial swelling1 (rsw1) plants, irx3 plants show no increase in the accumulation of beta-1,4-linked glucose in the noncrystalline cell wall fraction. IRX3 and RSW1 fall into a distinct subgroup (Csa) of Arabidopsis genes showing homology to bacterial cellulose synthases.  (+info)

PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway. (30/2024)

To investigate the molecular basis of PTEN-mediated tumor suppression, we introduced a null mutation into the mouse Pten gene by homologous recombination in embryonic stem (ES) cells. Pten-/- ES cells exhibited an increased growth rate and proliferated even in the absence of serum. ES cells lacking PTEN function also displayed advanced entry into S phase. This accelerated G1/S transition was accompanied by down-regulation of p27(KIP1), a major inhibitor for G1 cyclin-dependent kinases. Inactivation of PTEN in ES cells and in embryonic fibroblasts resulted in elevated levels of phosphatidylinositol 3,4,5,-trisphosphate, a product of phosphatidylinositol 3 kinase. Consequently, PTEN deficiency led to dosage-dependent increases in phosphorylation and activation of Akt/protein kinase B, a well-characterized target of the phosphatidylinositol 3 kinase signaling pathway. Akt activation increased Bad phosphorylation and promoted Pten-/- cell survival. Our studies suggest that PTEN regulates the phosphatidylinositol 3,4, 5,-trisphosphate and Akt signaling pathway and consequently modulates two critical cellular processes: cell cycle progression and cell survival.  (+info)

Isolation and characterization of the gene encoding the starch debranching enzyme limit dextrinase from germinating barley. (31/2024)

The gene encoding the starch debranching enzyme limit dextrinase, LD, from barley (Hordeum vulgare), was isolated from a genomic phage library using a barley cDNA clone as probe. The gene encodes a protein of 904 amino acid residues with a calculated molecular mass of 98.6 kDa. This is in agreement with a value of 105 kDa estimated by SDS-PAGE. The coding sequence is interrupted by 26 introns varying in length from 93 bp to 825 bp. The 27 exons vary in length from 53 bp to 197 bp. Southern blot analysis shows that the limit dextrinase gene is present as a single copy in the barley genome. Gene expression is high during germination and the steady state transcription level reaches a maximum at day 5 of germination. The deduced amino acid sequence corresponds to the protein sequence of limit dextrinase purified from germinating malt, as determined by automated N-terminal sequencing of tryptic fragments coupled with matrix assisted laser desorption mass spectrometry. The sequenced peptide fragments cover 70% of the entire protein sequence, which shows 62% and 77% identity to that of starch debranching enzymes from spinach and rice and 37% identity to Klebsiella pullulanase. Sequence alignment supports the multidomain architecture and identifies both secondary structure elements of the catalytic (beta/alpha)8-barrel substrate, catalytic residues, and specificity associated motifs characteristic of members of the glycoside hydrolase family 13 which cleave alpha-1,6-glucosidic bonds. A remarkable distribution of the secondary structure elements to individual exons is observed.  (+info)

Complete cDNA cloning, genomic organization, chromosomal assignment, functional characterization of the promoter, and expression of the murine Bamacan gene. (32/2024)

Bamacan is a chondroitin sulfate proteoglycan that abounds in basement membranes. To gain insights into the bamacan gene regulation and transcriptional control, we examined the genomic organization and identified the promoter region of the mouse bamacan gene. Secondary structure analysis of the protein reveals a sequential organization of three globular regions interconnected by two alpha-helix coiled-coils. The N- and the C-terminal ends carry a P-loop and a DA box motif that can act cooperatively to bind ATP. These features as well as the high sequence homology with members of the SMC (structural maintenance of chromosome) protein family led us to conclude that bamacan is a member of this protein family. The gene comprises 31 exons and is driven by a promoter that is highly enriched in GC sequences and lacks TATA and CAAT boxes. The promoter is highly functional in transient cell transfection assays, and step-wise 5' deletions identify a strong enhancer element between -659 and -481 base pairs that includes Jun/Fos proto-oncogene-binding elements. Using backcrossing experiments we mapped the Bam gene to distal chromosome 19, a locus syntenic to human chromosome 10q25. Bamacan is differentially expressed in mouse tissues with the highest levels in testes and brain. Notably, bamacan mRNA levels are low in normal cells and markedly reduced during quiescence but are highly increased when cells resume growth upon serum stimulation. In contrast, in all transformed cells tested, bamacan is constitutively overexpressed, and its levels do not change with cell cycle progression. These results suggest that bamacan is involved in the control of cell growth and transformation.  (+info)