Genome comparison of progressively drug resistant Plasmodium falciparum lines derived from drug sensitive clone. (41/730)

Chloroquine has been the mainstay of malaria chemotherapy for the past five decades, but resistance is now widespread. Pyrimethamine or proguanil form an important component of some alternate drug combinations being used for treatment of uncomplicated Plasmodium falciparum infections in areas of chloroquine resistance. Both pyrimethamine and proguanil are dihydrofolate reductase (DHFR) inhibitors, the proguanil acting primarily through its major metabolite cycloguanil. Resistance to these drugs arises due to specific point mutations in the dhfr gene. Cross resistance between cycloguanil and pyrimethamine is not absolute. It is, therefore, important to investigate mutation rates in P. falciparum for pyrimethamine and proguanil so that DHFR inhibitor with less mutation rate is favored in drug combinations. Hence, we have compared mutation rates in P. falciparum genome for pyrimethamine and cycloguanil. Using erythrocytic stages of P. falciparum cultures, progressively drug resistant lines were selected in vitro and comparing their RFLP profile with a repeat sequence. Our finding suggests that pyrimethamine has higher mutation rate compared to cycloguanil. It enhances the degree of genomic polymorphism leading to diversity of natural parasite population which in turn is predisposes the parasites for faster selection of resistance to some other antimalarial drugs.  (+info)

Inheritance pattern of RAPD markers in Melipona quadrifasciata (Hymenoptera: Apidae, Meliponinae). (42/730)

Melipona quadrifasciata is an important pollinator agent in several regions of Brazil. Data concerning the genetics of this species are scarce in the literature. In this work we used the random amplified polymorphic DNA (RAPD) technique to determine the degree of polymorphism and the inheritance pattern of these molecular markers in this species. Our ultimate goal is to establish tools to be used in the study of the genomic organization of M. quadrifasciata. Genomic DNA from progenies F(1) and BC(1) were assayed with 79 different primers, yielding an average of 6.67 bands and 1.68 polymorphisms per primer. Three types of polymorphisms were detected: band presence/absence, band intensity, and fragment-length polymorphisms. Most of the observed polymorphisms were band presence/absence, typical of RAPD-dominant markers. The number of observed polymorphisms and their segregation in accordance with a Mendelian proportion confirm the importance of this technique for genome analysis of species like M. quadrifasciata that are poorly studied at the genetic level.  (+info)

A genomic timescale for the origin of eukaryotes. (43/730)

BACKGROUND: Genomic sequence analyses have shown that horizontal gene transfer occurred during the origin of eukaryotes as a consequence of symbiosis. However, details of the timing and number of symbiotic events are unclear. A timescale for the early evolution of eukaryotes would help to better understand the relationship between these biological events and changes in Earth's environment, such as the rise in oxygen. We used refined methods of sequence alignment, site selection, and time estimation to address these questions with protein sequences from complete genomes of prokaryotes and eukaryotes. RESULTS: Eukaryotes were found to evolve faster than prokaryotes, with those eukaryotes derived from eubacteria evolving faster than those derived from archaebacteria. We found an early time of divergence (approximately 4 billion years ago, Ga) for archaebacteria and the archaebacterial genes in eukaryotes. Our analyses support at least two horizontal gene transfer events in the origin of eukaryotes, at 2.7 Ga and 1.8 Ga. Time estimates for the origin of cyanobacteria (2.6 Ga) and the divergence of an early-branching eukaryote that lacks mitochondria (Giardia) (2.2 Ga) fall between those two events. CONCLUSIONS: We find support for two symbiotic events in the origin of eukaryotes: one premitochondrial and a later mitochondrial event. The appearance of cyanobacteria immediately prior to the earliest undisputed evidence for the presence of oxygen (2.4-2.2 Ga) suggests that the innovation of oxygenic photosynthesis had a relatively rapid impact on the environment as it set the stage for further evolution of the eukaryotic cell.  (+info)

Serial analysis of gene expression in Plasmodium falciparum reveals the global expression profile of erythrocytic stages and the presence of anti-sense transcripts in the malarial parasite. (44/730)

Serial analysis of gene expression (SAGE) was applied to the malarial parasite Plasmodium falciparum to characterize the comprehensive transcriptional profile of erythrocytic stages. A SAGE library of approximately 8335 tags representing 4866 different genes was generated from 3D7 strain parasites. Basic local alignment search tool analysis of high abundance SAGE tags revealed that a majority (88%) corresponded to 3D7 sequence, and despite the low complexity of the genome, 70% of these highly abundant tags matched unique loci. Characterization of these suggested the major metabolic pathways that are used by the organism under normal culture conditions. Furthermore several tags expressed at high abundance (30% of tags matching to unique loci of the 3D7 genome) were derived from previously uncharacterized open reading frames, demonstrating the use of SAGE in genome annotation. The open platform "profiling" nature of SAGE also lead to the important discovery of a novel transcriptional phenomenon in the malarial pathogen: a significant number of highly abundant tags that were derived from annotated genes (17%) corresponded to antisense transcripts. These SAGE data were validated by two independent means, strand specific reverse transcription-polymerase chain reaction and Northern analysis, where antisense messages were detected in both asexual and sexual stages. This finding has implications for transcriptional regulation of Plasmodium gene expression.  (+info)

Parallel evolution of histophagy in ciliates of the genus Tetrahymena. (45/730)

BACKGROUND: Species of Tetrahymena were grouped into three complexes based on morphological and life history traits: the pyriformis complex of microstomatous forms; the patula complex of microstome-macrostome transformers; and the rostrata complex of facultative and obligate histophages. We tested whether these three complexes are paraphyletic using the complete sequence of the small subunit rDNA (SSrDNA). RESULTS: In addition to the 16 species of Tetrahymena whose SSrDNA sequences are known, we sequenced the complete SSrDNA from the following histophagous Tetrahymena species; Tetrahymena bergeri, Tetrahymena mobilis, Tetrahymena rostrata, and Tetrahymena setosa as well as the macrostome species Tetrahymena vorax. We also included a ciliate tentatively identified as Lambornella sp., a parasite of the mosquito Aedes sp. We confirmed earlier results using SSrDNA, which showed two distinct clusters of Tetrahymena species: the australis group and borealis group. The genetic distances among Tetrahymena are in general very small. However, all nodes were supported by high bootstrap values. With the exception of T. bergeri and T. corlissi, which are both histophagous and group as sister species, all other histophagous Tetrahymena species are most closely related to a bacterivorous species. Furthermore, Lambornella sp. and T. empidokyrea, both mosquito parasites, are sister species, although there is a considerable genetic distance between them. CONCLUSIONS: There has been parallel evolution of histophagy in the genus Tetrahymena and the three classical species complexes are paraphyletic. As the genus Lambornella arises within the Tetrahymena clade, it is not likely a defensible one.  (+info)

Transition state analogue inhibitors of purine nucleoside phosphorylase from Plasmodium falciparum. (46/730)

Immucillins are logically designed transition-state analogue inhibitors of mammalian purine nucleoside phosphorylase (PNP) that induce purine-less death of Plasmodium falciparum in cultured erythrocytes (Kicska, G. A., Tyler, P. C., Evans, G. B., Furneaux, R. H., Schramm, V. L., and Kim, K. (2002) J. Biol. Chem. 277, 3226-3231). PNP is present at high levels in human erythrocytes and in P. falciparum, but the Plasmodium enzyme has not been characterized. A search of the P. falciparum genome data base yielded an open reading frame similar to the PNP from Escherichia coli. PNP from P. falciparum (P. falciparum PNP) was cloned, overexpressed in E. coli, purified, and characterized. The primary amino acid sequence has 26% identity with E. coli PNP, has 20% identity with human PNP, and is phylogenetically unique among known PNPs with equal genetic distance between PNPs and uridine phosphorylases. Recombinant P. falciparum PNP is catalytically active for inosine and guanosine but is less active for uridine. The immucillins are powerful inhibitors of P. falciparum PNP. Immucillin-H is a slow onset tight binding inhibitor with a K(i)* value of 0.6 nm. Eight related immucillins are also powerful inhibitors with dissociation constants from 0.9 to 20 nm. The K(m)/K(i)* value for immucillin-H is 9000, making this inhibitor the most powerful yet reported for P. falciparum PNP. The PNP from P. falciparum differs from the human enzyme by a lower K(m) for inosine, decreased preference for deoxyguanosine, and reduced affinity for the immucillins, with the exception of 5'-deoxy-immucillin-H. These properties of P. falciparum PNP are consistent with a metabolic role in purine salvage and provide an explanation for the antibiotic effect of the immucillins on P. falciparum cultured in human erythrocytes.  (+info)

Three retrotransposon families in the genome of Giardia lamblia: two telomeric, one dead. (47/730)

Transposable elements inhabiting eukaryotic genomes are generally regarded either as selfish DNA, which is selectively neutral to the host organism, or as parasitic DNA, deleterious to the host. Thus far, the only agreed-upon example of beneficial eukaryotic transposons is provided by Drosophila telomere-associated retrotransposons, which transpose directly to the chromosome ends and thereby protect them from degradation. This article reports the transposon content of the genome of the protozoan Giardia lamblia, one of the earliest-branching eukaryotes. A total of three non-long terminal repeat retrotransposon families have been identified, two of which are located at the ends of chromosomes, and the third one contains exclusively dead copies with multiple internal deletions, nucleotide substitutions, and frame shifts. No other reverse transcriptase- or transposase-related sequences were found. Thus, the entire genome of this protozoan, which is not known to reproduce sexually, contains only retrotransposons that are either confined to telomeric regions and possibly beneficial, or inactivated and completely nonfunctional.  (+info)

Genomic database resources for Dictyostelium discoideum. (48/730)

Dictyostelium is an attractive model system for the study of mechanisms basic to cellular function or complex multicellular developmental processes. Recent advances in Dictyostelium genomics have generated a wide spectrum of resources. However, much of the current genomic sequence information is still not currently available through GenBank or related databases. Thus, many investigators are unaware that extensive sequence data from Dictyostelium has been compiled, or of its availability and access. Here, we discuss progress in Dictyostelium genomics and gene annotation, and highlight the primary portals for sequence access, manipulation and analysis (http://genome.imb-jena.de/dictyostelium/; http://dictygenome.bcm.tmc.edu/; http://www.sanger. ac.uk/Projects/D_discoideum/; http://www.csm.biol. tsukuba.ac.jp/cDNAproject.html).  (+info)