Transposition of the retrotransposon MAGGY in heterologous species of filamentous fungi. (33/2616)

MAGGY is a gypsy-like LTR retrotransposon isolated from the blast fungus Pyricularia grisea (teleomorph, Magnaporthe grisea). We examined transposition of MAGGY in three P. grisea isolates (wheat, finger millet, and crabgrass pathogen), which did not originally possess a MAGGY element, and in two heterologous species of filamentous fungi, Colletotrichum lagenarium and P. zingiberi. Genomic Southern analysis of MAGGY transformants suggested that transposition of MAGGY occurred in all filamentous fungi tested. In contrast, no transposition was observed in any transformants with a modified MAGGY containing a 513-bp deletion in the reverse transcriptase domain. When a MAGGY derivative carrying an artificial intron was introduced into the wheat isolate of P. grisea and C. lagenarium, loss of the intron was observed. These results showed that MAGGY can undergo autonomous RNA-mediated transposition in heterologous filamentous fungi. The frequency of transposition differed among fungal species. MAGGY transposed actively in the wheat isolate of P. grisea and P. zingiberi, but transposition in C. lagenarium appeared to be rare. This is the first report that demonstrates active transposition of a fungal transposable element in heterologous hosts. Possible usage of MAGGY as a genetic tagging tool in filamentous fungi is discussed.  (+info)

Whole genome-based phylogenetic analysis of free-living microorganisms. (34/2616)

A phylogenetic 'tree of life' has been constructed based on the observed presence and absence of families of protein-encoding genes observed in 11 complete genomes of free-living microorganisms. Past attempts to reconstruct the evolutionary relation-ships of microorganisms have been limited to sets of genes rather than complete genomes. Despite apparent rampant lateral gene transfer among microorganisms, these results indicate a single robust underlying evolutionary history for these organisms. Broadly, the tree produced is very similar to the small subunit rRNA tree although several additional phylogenetic relationships appear to be resolved, including the relationship of Archaeoglobus to the methanogens studied. This result is in contrast to notions that a robust phylogenetic reconstruction of microorganisms is impossible due to their genomes being composed of an incomprehensible amalgam of genes with complicated histories and suggests that this style of genome-wide phylogenetic analysis could become an important method for studying the ancient diversification of life on Earth. Analyses using informational and operational subsets of the genes showed that this 'tree of life' is not dependent on the phylogenetically more consistent informational genes.  (+info)

Organization of DNA replication origins in the fission yeast genome. (35/2616)

Eukaryotic DNA replication initiates at multiple points along the chromosomes known as replication origins (ORIs). We have developed a strategy to identify ORIs directly from replication intermediates in the fission yeast Schizosaccharomyces pombe. Mapping of a selection of the novel ORIs onto the genome reveals their preferential localization at intergenic regions upstream from genes. These results are supported by the observation that a large proportion of regions overlapping gene promoters contain active ORIs. Mapping of the genomic ars1 replication origin at nucleotide resolution shows that replication initiates at a defined position immediately upstream from the hus5(+) promoter. Deletion analysis indicates that the regulatory elements required to initiate transcription and replication lie in close proximity, suggesting a possible relationship between both processes in vivo.  (+info)

Functional analysis of human FEN1 in Saccharomyces cerevisiae and its role in genome stability. (36/2616)

The flap endonuclease, FEN1, is an evolutionarily conserved component of DNA replication from archaebacteria to humans. Based on in vitro results, it processes Okazaki fragments during replication and is involved in base excision repair. FEN1 removes the last primer ribonucleotide on the lagging strand and it cleaves a 5' flap that may result from strand displacement during replication or during base excision repair. Its biological importance has been revealed largely through studies in the yeast Saccharomyces cerevisiae where deletion of the homologous gene RAD27 results in genome instability and mutagen sensitivity. While the in vivo function of Rad27 has been well characterized through genetic and biochemical approaches, little is understood about the in vivo functions of human FEN1. Guided by our recent results with yeast RAD27, we explored the function of human FEN1 in yeast. We found that the human FEN1 protein complements a yeast rad27 null mutant for a variety of defects including mutagen sensitivity, genetic instability and the synthetic lethal interactions of a rad27 rad51 and a rad27 pol3-01 mutant. Furthermore, a mutant form of FEN1 lacking nuclease function exhibits dominant-negative effects on cell growth and genome instability similar to those seen with the homologous yeast rad27 mutation. This genetic impact is stronger when the human and yeast PCNA-binding domains are exchanged. These data indicate that the human FEN1 and yeast Rad27 proteins act on the same substrate in vivo. Our study defines a sensitive yeast system for the identification and characterization of mutations in FEN1.  (+info)

Karyotypes of Saccharomyces sensu lato species. (37/2616)

An improved pulsed-field electrophoresis program was developed to study differently sized chromosomes within the genus Saccharomyces. The number of chromosomes in the type strains was shown to be nine in Saccharomyces castellii and Saccharomyces dairenensis, 12 in Saccharomyces servazzii and Saccharomyces unisporus, 16 in Saccharomyces exiguus and seven in Saccharomyces kluyveri. The sizes of individual chromosomes were resolved and the approximate genome sizes were determined by the addition of individual chromosomes of the karyotypes. Apparently, the genome of S. exiguus, which is the only Saccharomyces sensu lato yeast to contain small chromosomes, is larger than that of Saccharomyces cerevisiae. On the other hand, other species exhibited genome sizes that were 10-25% smaller than that of S. cerevisiae. Well-defined karyotypes represent the basis for future genome mapping and sequencing projects, as well as studies of the origin of the modern genomes.  (+info)

Dual role of the mitochondrial chaperone Mdj1p in inheritance of mitochondrial DNA in yeast. (38/2616)

Mdj1p, a homolog of the bacterial DnaJ chaperone protein, plays an essential role in the biogenesis of functional mitochondria in the yeast Saccharomyces cerevisiae. We analyzed the role of Mdj1p in the inheritance of mitochondrial DNA (mtDNA). Mitochondrial genomes were rapidly lost in a temperature-sensitive mdj1 mutant under nonpermissive conditions. The activity of mtDNA polymerase was severely reduced in the absence of functional Mdj1p at a nonpermissive temperature, demonstrating the dependence of the enzyme on Mdj1p. At a permissive temperature, the activity of mtDNA polymerase was not affected by the absence of Mdj1p. However, under these conditions, intact [rho(+)] genomes were rapidly converted to nonfunctional [rho(-)] genomes which were stably propagated in an mdj1 deletion strain. We propose that mtDNA polymerase depends on Mdj1p as a chaperone in order to acquire and/or maintain an active conformation at an elevated temperature. In addition, Mdj1p is required for the inheritance of intact mitochondrial genomes at a temperature supporting optimal growth; this second function appears to be unrelated to the function of Mdj1p in maintaining mtDNA polymerase activity.  (+info)

Identification of target sites of the alpha2-Mcm1 repressor complex in the yeast genome. (39/2616)

The alpha2 and Mcm1 proteins bind DNA as a heterotetramer to repress transcription of cell-type-specific genes in the yeast Saccharomyces cerevisiae. Based on the DNA sequence requirements for binding by the alpha2-Mcm1 complex, we have searched the yeast genome for all potential alpha2-Mcm1 binding sites. Genes adjacent to the sites were examined for expression in the different cell mating types. These sites were further analyzed by cloning the sequences into a heterologous promoter and assaying for alpha2-Mcm1-dependent repression in vivo and DNA-binding affinity in vitro. Fifty-nine potential binding sites were identified in the search. Thirty-seven sites are located within or downstream of coding region of the gene. None of the sites assayed from this group are functional repressor sites in vivo or bound by the alpha2-Mcm1 complex in vitro. Among the remaining 22 sites, six are in the promoters of known alpha-specific genes and two other sites have an alpha2-Mcm1-dependent role in determining the direction of mating type switching. Among the remaining sequences, we have identified a functional site located in the promoter region of a previously uncharacterized gene, SCYJL170C. This site functions to repress transcription of a heterologous promoter and the alpha2-Mcm1 complex binds to the site in vitro. SCYJL170C is repressed by alpha2-Mcm1 in vivo and therefore using this method we have identified a new a-specific gene, which we call ASG7.  (+info)

Transformation of Escherichia coli with DNA from Saccharomyces cerevisiae cell lysates. (40/2616)

We developed a system to monitor the transfer of heterologous DNA from a genetically manipulated strain of Saccharomyces cerevisiae to Escherichia coli. This system is based on a yeast strain that carries multiple integrated copies of a pUC-derived plasmid. The bacterial sequences are maintained in the yeast genome by selectable markers for lactose utilization. Lysates of the yeast strain were used to transform E. coli. Transfer of DNA was measured by determining the number of ampicillin-resistant E. coli clones. Our results show that transmission of the Amp(r) gene to E. coli by genetic transformation, caused by DNA released from the yeast, occurs at a very low frequency (about 50 transformants per microg of DNA) under optimal conditions (a highly competent host strain and a highly efficient transformation procedure). These results suggest that under natural conditions, spontaneous transmission of chromosomal genes from genetically modified organisms is likely to be rare.  (+info)