Genome-wide bioinformatic and molecular analysis of introns in Saccharomyces cerevisiae. (1/2616)

Introns have typically been discovered in an ad hoc fashion: introns are found as a gene is characterized for other reasons. As complete eukaryotic genome sequences become available, better methods for predicting RNA processing signals in raw sequence will be necessary in order to discover genes and predict their expression. Here we present a catalog of 228 yeast introns, arrived at through a combination of bioinformatic and molecular analysis. Introns annotated in the Saccharomyces Genome Database (SGD) were evaluated, questionable introns were removed after failing a test for splicing in vivo, and known introns absent from the SGD annotation were added. A novel branchpoint sequence, AAUUAAC, was identified within an annotated intron that lacks a six-of-seven match to the highly conserved branchpoint consensus UACUAAC. Analysis of the database corroborates many conclusions about pre-mRNA substrate requirements for splicing derived from experimental studies, but indicates that splicing in yeast may not be as rigidly determined by splice-site conservation as had previously been thought. Using this database and a molecular technique that directly displays the lariat intron products of spliced transcripts (intron display), we suggest that the current set of 228 introns is still not complete, and that additional intron-containing genes remain to be discovered in yeast. The database can be accessed at o/yeast_introns.html.  (+info)

The prokaryotic beta-recombinase catalyzes site-specific recombination in mammalian cells. (2/2616)

The development of new strategies for the in vivo modification of eukaryotic genomes has become an important objective of current research. Site-specific recombination has proven useful, as it allows controlled manipulation of murine, plant, and yeast genomes. Here we provide the first evidence that the prokaryotic site-specific recombinase (beta-recombinase), which catalyzes only intramolecular recombination, is active in eukaryotic environments. beta-Recombinase, encoded by the beta gene of the Gram-positive broad host range plasmid pSM19035, has been functionally expressed in eukaryotic cell lines, demonstrating high avidity for the nuclear compartment and forming a clear speckled pattern when assayed by indirect immunofluorescence. In simian COS-1 cells, transient beta-recombinase expression promoted deletion of a DNA fragment lying between two directly oriented specific recognition/crossing over sequences (six sites) located as an extrachromosomal DNA substrate. The same result was obtained in a recombination-dependent lacZ activation system tested in a cell line that stably expresses the beta-recombinase protein. In stable NIH/3T3 clones bearing different number of copies of the target sequences integrated at distinct chromosomal locations, transient beta-recombinase expression also promoted deletion of the intervening DNA, independently of the insertion position of the target sequences. The utility of this new recombination tool for the manipulation of eukaryotic genomes, used either alone or in combination with the other recombination systems currently in use, is discussed.  (+info)

The genes for the Golgi apparatus N-acetylglucosaminyltransferase and the UDP-N-acetylglucosamine transporter are contiguous in Kluyveromyces lactis. (3/2616)

The mannan chains of Kluyveromyces lactis mannoproteins are similar to those of Saccharomyces cerevisiae except that they lack mannose phosphate and have terminal alpha(1-->2)-linked N-acetylglucosamine. Previously, Smith et al. (Smith, W. L. Nakajima, T., and Ballou, C. E. (1975) J. Biol. Chem. 250, 3426-3435) characterized two mutants, mnn2-1 and mnn2-2, which lacked terminal N-acetylglucosamine in their mannoproteins. The former mutant lacks the Golgi N-acetylglucosaminyltransferase activity, whereas the latter one was recently found to be deficient in the Golgi UDP-GlcNAc transporter activity. Analysis of extensive crossings between the two mutants led Ballou and co-workers (reference cited above) to conclude that these genes were allelic or tightly linked. We have now cloned the gene encoding the K. lactis Golgi membrane N-acetylglucosaminyltransferase by complementation of the mnn2-1 mutation and named it GNT1. The mnn2-1 mutant was transformed with a 9.5-kilobase (kb) genomic fragment previously shown to contain the gene encoding the UDP-GlcNAc transporter; transformants were isolated, and phenotypic correction was monitored after cell surface labeling with fluorescein isothiocyanate-conjugated Griffonia simplicifolia II lectin, which binds terminal N-acetylglucosamine, and a fluorescence-activated cell sorter. The above 9.5-kb DNA fragment restored the wild-type lectin binding phenotype of the transferase mutant; further subcloning of this fragment yielded a smaller one containing an opening reading frame of 1,383 bases encoding a protein of 460 amino acids with an estimated molecular mass of 53 kDa, which also restored the wild-type phenotype. Transformants had also regained the ability to transfer N-acetylglucosamine to 3-0-alpha-D-mannopyranosyl-D-mannopyranoside. The gene encoding the above transferase was found to be approximately 1 kb upstream from the previously characterized MNN2 gene encoding the UDP-GlcNAc Golgi transporter. Each gene can be transcribed independently by their own promoter. To our knowledge this is the first demonstration of two Golgi apparatus functionally related genes being contiguous in a genome.  (+info)

The yeast dynamin-like protein, Mgm1p, functions on the mitochondrial outer membrane to mediate mitochondrial inheritance. (4/2616)

The mdm17 mutation causes temperature-dependent defects in mitochondrial inheritance, mitochondrial morphology, and the maintenance of mitochondrial DNA in the yeast Saccharomyces cerevisiae. Defects in mitochondrial transmission to daughter buds and changes in mitochondrial morphology were apparent within 30 min after shifting cells to 37 degrees C, while loss of the mitochondrial genome occurred after 4-24 h at the elevated temperature. The mdm17 lesion mapped to MGM1, a gene encoding a dynamin-like GTPase previously implicated in mitochondrial genome maintenance, and the cloned MGM1 gene complements all of the mdm17 mutant phenotypes. Cells with an mgm1-null mutation displayed aberrant mitochondrial inheritance and morphology. A version of mgm1 mutated in a conserved residue in the putative GTP-binding site was unable to complement any of the mutant defects. It also caused aberrant mitochondrial distribution and morphology when expressed at high levels in cells that also contained a wild-type copy of the gene. Mgm1p was localized to the mitochondrial outer membrane and fractionated as a component of a high molecular weight complex. These results indicate that Mgm1p is a mitochondrial inheritance and morphology component that functions on the mitochondrial surface.  (+info)

Development and characterization of complex DNA fingerprinting probes for the infectious yeast Candida dubliniensis. (5/2616)

Using a strategy to clone large genomic sequences containing repetitive elements from the infectious yeast Candida dubliniensis, the three unrelated sequences Cd1, Cd24, and Cd25, with respective molecular sizes of 15,500, 10,000, and 16,000 bp, were cloned and analyzed for their efficacy as DNA fingerprinting probes. Each generated a complex Southern blot hybridization pattern with endonuclease-digested genomic DNA. Cd1 generated an extremely variable pattern that contained all of the bands of the pattern generated by the repeat element RPS of Candida albicans. We demonstrated that Cd1 does not contain RPS but does contain a repeat element associated with RPS throughout the C. dubliniensis genome. The Cd1 pattern was the least stable over time both in vitro and in vivo and for that reason proved most effective in assessing microevolution. Cd24, which did not exhibit microevolution in vitro, was highly variable in vivo, suggesting in vivo-dependent microevolution. Cd25 was deemed the best probe for broad epidemiological studies, since it was the most stable over time, was the only truly C. dubliniensis-specific probe of the three, generated the most complex pattern, was distributed throughout all C. dubliniensis chromosomes, and separated a worldwide collection of 57 C. dubliniensis isolates into two distinct groups. The presence of a species-specific repetitive element in Cd25 adds weight to the already substantial evidence that C. dubliniensis represents a bona fide species.  (+info)

Detecting patterns of protein distribution and gene expression in silico. (6/2616)

Most biological information is contained within gene and genome sequences. However, current methods for analyzing these data are limited primarily to the prediction of coding regions and identification of sequence similarities. We have developed a computer algorithm, CoSMoS (for context sensitive motif searches), which adds context sensitivity to sequence motif searches. CoSMoS was challenged to identify genes encoding peroxisome-associated and oleate-induced genes in the yeast Saccharomyces cerevisiae. Specifically, we searched for genes capable of encoding proteins with a type 1 or type 2 peroxisomal targeting signal and for genes containing the oleate-response element, a cis-acting element common to fatty acid-regulated genes. CoSMoS successfully identified 7 of 8 known PTS-containing peroxisomal proteins and 13 of 14 known oleate-regulated genes. More importantly, CoSMoS identified an additional 18 candidate peroxisomal proteins and 300 candidate oleate-regulated genes. Preliminary localization studies suggest that these include at least 10 previously unknown peroxisomal proteins. Phenotypic studies of selected gene disruption mutants suggests that several of these new peroxisomal proteins play roles in growth on fatty acids, one is involved in peroxisome biogenesis and at least two are required for synthesis of lysine, a heretofore unrecognized role for peroxisomes. These results expand our understanding of peroxisome content and function, demonstrate the utility of CoSMoS for context-sensitive motif scanning, and point to the benefits of improved in silico genome analysis.  (+info)

Suppressor analysis of fimbrin (Sac6p) overexpression in yeast. (7/2616)

Yeast fimbrin (Sac6p) is an actin filament-bundling protein that is lethal when overexpressed. To identify the basis for this lethality, we sought mutations that can suppress it. A total of 1326 suppressor mutations were isolated and analyzed. As the vast majority of mutations were expected to simply decrease the expression of Sac6p to tolerable levels, a rapid screen was devised to eliminate these mutations. A total of 1324 mutations were found to suppress by reducing levels of Sac6p in the cell. The remaining 2 mutations were both found to be in the actin gene and to make the novel changes G48V (act1-20) and K50E (act1-21). These mutations suppress the defect in cytoskeletal organization and cell morphology seen in ACT1 cells that overexpress SAC6. These findings indicate that the lethal phenotype caused by Sac6p overexpression is mediated through interaction with actin. Moreover, the altered residues lie in the region of actin previously implicated in the binding of Sac6p, and they result in a reduced affinity of actin for Sac6p. These results indicate that the two mutations most likely suppress by reducing the affinity of actin for Sac6p in vivo. This study suggests it should be possible to use this type of suppressor analysis to identify other pairs of physically interacting proteins and suggests that it may be possible to identify sites where such proteins interact with each other.  (+info)

Tempo and mode of Ty element evolution in Saccharomyces cerevisiae. (8/2616)

The Saccharomyces cerevisiae genome contains five families of long terminal repeat (LTR) retrotransposons, Ty1-Ty5. The sequencing of the S. cerevisiae genome provides an unprecedented opportunity to examine the patterns of molecular variation existing among the entire genomic complement of Ty retrotransposons. We report the results of an analysis of the nucleotide and amino acid sequence variation within and between the five Ty element families of the S. cerevisiae genome. Our results indicate that individual Ty element families tend to be highly homogenous in both sequence and size variation. Comparisons of within-element 5' and 3' LTR sequences indicate that the vast majority of Ty elements have recently transposed. Furthermore, intrafamily Ty sequence comparisons reveal the action of negative selection on Ty element coding sequences. These results taken together suggest that there is a high level of genomic turnover of S. cerevisiae Ty elements, which is presumably in response to selective pressure to escape host-mediated repression and elimination mechanisms.  (+info)