Identification of novel pro-alpha2(IX) collagen gene mutations in two families with distinctive oligo-epiphyseal forms of multiple epiphyseal dysplasia. (73/4980)

Multiple epiphyseal dysplasia (MED) is a genetically heterogeneous disorder with marked clinical and radiographic variability. Traditionally, the mild "Ribbing" and severe "Fairbank" types have been used to define a broad phenotypic spectrum. Mutations in the gene encoding cartilage oligomeric-matrix protein have been shown to result in several types of MED, whereas mutations in the gene encoding the alpha2 chain of type IX collagen (COL9A2) have so far been found only in two families with the Fairbank type of MED. Type IX collagen is a heterotrimer of pro-alpha chains derived from three distinct genes-COL9A1, COL9A2, and COL9A3. In this article, we describe two families with distinctive oligo-epiphyseal forms of MED, which are heterozygous for different mutations in the COL9A2 exon 3/intron 3 splice-donor site. Both of these mutations result in the skipping of exon 3 from COL9A2 mRNA, but the position of the mutation in the splice-donor site determines the stability of the mRNA produced from the mutant COL9A2 allele.  (+info)

Characterization of a germline mosaicism in families with Lowe syndrome, and identification of seven novel mutations in the OCRL1 gene. (74/4980)

The oculocerebrorenal syndrome of Lowe (OCRL) is an X-linked disorder characterized by major abnormalities of eyes, nervous system, and kidneys. Mutations in the OCRL1 gene have been associated with the disease. OCRL1 encodes a phosphatidylinositol 4, 5-biphosphate (PtdIns[4,5]P2) 5-phosphatase. We have examined the OCRL1 gene in eight unrelated patients with OCRL and have found seven new mutations and one recurrent in-frame deletion. Among the new mutations, two nonsense mutations (R317X and E558X) and three other frameshift mutations caused premature termination of the protein. A missense mutation, R483G, was located in the highly conserved PtdIns(4,5)P2 5-phosphatase domain. Finally, one frameshift mutation, 2799delC, modifies the C-terminal part of OCRL1, with an extension of six amino acids. Altogether, 70% of missense mutations are located in exon 15, and 52% of all mutations cluster in exons 11-15. We also identified two new microsatellite markers for the OCRL1 locus, and we detected a germline mosaicism in one family. This observation has direct implications for genetic counseling of Lowe syndrome families.  (+info)

MEFV-Gene analysis in armenian patients with Familial Mediterranean fever: diagnostic value and unfavorable renal prognosis of the M694V homozygous genotype-genetic and therapeutic implications. (75/4980)

Familial Mediterranean fever (FMF) is a recessively inherited disorder that is common in patients of Armenian ancestry. To date, its diagnosis, which can be made only retrospectively, is one of exclusion, based entirely on nonspecific clinical signs that result from serosal inflammation and that may lead to unnecessary surgery. Renal amyloidosis, prevented by colchicine, is the most severe complication of FMF, a disorder associated with mutations in the MEFV gene. To evaluate the diagnostic and prognostic value of MEFV-gene analysis, we investigated 90 Armenian FMF patients from 77 unrelated families that were not selected through genetic-linkage analysis. Eight mutations, one of which (R408Q) is new, were found to account for 93% of the 163 independent FMF alleles, with both FMF alleles identified in 89% of the patients. In several instances, family studies provided molecular evidence for pseudodominant transmission and incomplete penetrance of the disease phenotype. The M694V homozygous genotype was found to be associated with a higher prevalence of renal amyloidosis and arthritis, compared with other genotypes (P=.0002 and P=.006, respectively). The demonstration of both the diagnostic and prognostic value of MEFV analysis and particular modes of inheritance should lead to new ways for management of FMF-including genetic counseling and therapeutic decisions in affected families.  (+info)

Noninvasive test for fragile X syndrome, using hair root analysis. (76/4980)

Identification of the FMR1 gene and the repeat-amplification mechanism causing fragile X syndrome led to development of reliable DNA-based diagnostic methods, including Southern blot hybridization and PCR. Both methods are performed on DNA isolated from peripheral blood cells and measure the repeat size in FMR1. Using an immunocytochemical technique on blood smears, we recently developed a novel test for identification of patients with fragile X syndrome. This method, also called "antibody test," uses monoclonal antibodies against the FMR1 gene product (FMRP) and is based on absence of FMRP in patients' cells. Here we describe a new diagnostic test to identify male patients with fragile X syndrome, on the basis of lack of FMRP in their hair roots. Expression of FMRP in hair roots was studied by use of an FMRP-specific antibody test, and the percentage of FMRP-expressing hair roots in controls and in male fragile X patients was determined. Control individuals showed clear expression of FMRP in nearly every hair root, whereas male fragile X patients lacked expression of FMRP in almost all their hair roots. Mentally retarded female patients with a full mutation showed FMRP expression in only some of their hair roots (<55%), and no overlap with normal female controls was observed. The advantages of this test are (1) plucking of hair follicles does no appreciable harm to the mentally retarded patient, (2) hairs can be sent in a simple envelope to a diagnostic center, and (3) the result of the test is available within 5 h of plucking. In addition, this test enabled us to identify two fragile X patients who did not show the full mutation by analysis of DNA isolated from blood cells.  (+info)

Patterns of instability of expanded CAG repeats at the ERDA1 locus in general populations. (77/4980)

A highly polymorphic CAG repeat locus, ERDA1, was recently described on human chromosome 17q21.3, with alleles as large as 50-90 repeats and without any disease association in the general population. We have studied allelic distribution at this locus in five human populations and have characterized the mutational patterns by direct observation of 731 meioses. The data show that large alleles (>/=40 CAG repeats) are generally most common in Asian populations, less common in populations of European ancestry, and least common among Africans. We have observed a high intergenerational instability (46. 3%+/-5.1%) of the large alleles. Although the mutation rate is not dependent on parental sex, paternal transmissions have predominantly resulted in contractions, whereas maternal transmissions have yielded expansions. Within this class of large alleles, the mutation rate increases concomitantly with increasing allele size, but the magnitude of repeat size change does not depend on the size of the progenitor allele. Sequencing of specific alleles reveals that the intermediate-sized alleles (30-40 repeats) have CAT/CAC interruptions within the CAG-repeat array. These results indicate that expansion and instability of trinucleotide repeats are not exclusively disease-associated phenomena. The implications of the existence of massively expanded alleles in the general populations are not yet understood.  (+info)

Screening for mutations in the promoter and the coding region of the IGFBP1 and IGFBP3 genes in Silver-Russell syndrome patients. (78/4980)

In the present study we sought to identify genetic variation in genes for insulin-like growth factor binding proteins 1 and 3 (IGFBP1, IGFBP3) in 7p12-13 which through alteration of protein function or level of expression might contribute to the manifestation of Silver-Russell syndrome. Genomic DNA samples from 49 Silver-Russell syndrome (SRS) patients and from unaffected controls were investigated by single-strand conformation analysis. Overlapping polymerase chain reaction fragments covered the whole coding sequences as well as the 5' untranslated region of the IGFBP1 and IGFBP3 genes. We detected 3 new polymorphisms in the transcribed sequence of IGFBP1, one amino acid polymorphism in exon 1 of IGFBP3 and four variants in its promotor region and in intron 1. They all occurred in similar frequencies in SRS patients and in controls. Thus, paternally inherited mutations in the promoter and coding regions of IGFBP1 and IGFBP3 genes play neither a major nor a minor role in the etiology of SRS. The newly detected polymorphisms in the coding region are powerful tools for analysis of imprinting status and for detection of possible changes in the imprinting patterns of the two genes.  (+info)

Detection of the most common G6PD gene mutations in Chinese using amplification refractory mutation system. (79/4980)

Glucose-6-phosphate dehydrogenase (G6PD) is the most common human enzymopathy. To date more than 122 mutations in the G6PD gene have been discovered, among which 12 point mutations are found in the Chinese. The 2 most common mutations, G1388A and G1376T, account for more than 50% of mutations representing various regions and ethnic groups in China. Setting up a simple and accurate method for detecting these mutations is not only useful for studying the frequency of the G6PD genotypes, but also for finding new mutations. The purpose of this study was to find a simple, inexpensive and accurate method for detecting these common mutations. The amplification refractory mutation system (ARMS) method was used in this study. Samples from 28 G6PD-deficient males were investigated. The natural and mismatched amplification and restriction enzyme digestion method was used as a standard method to evaluate the nature of the point mutations. Sixteen cases were found carrying the G1388A mutation and 12 the G1376T mutation. Fourteen cases of G1388A and 10 cases of G1376T were confirmed by ARMS. Four cases were not in concordance with the results obtained by the mismatched amplification-restriction enzyme digestion. These 4 cases were then judged by direct PCR sequencing at exon 12. The DNA sequencing data supported the results obtained by ARMS. Thus we concluded that the ARMS is a rapid, simple, inexpensive and accurate method for detecting the most common G6PD gene mutations among the Chinese.  (+info)

Somatic MEN1 gene mutation does not contribute significantly to sporadic pituitary tumorigenesis. (80/4980)

Pituitary adenomas are a common manifestation of multiple endocrine neoplasia type 1 (MEN1) but most of them occur sporadically. There are only a few well defined genetic abnormalities known to occur in these sporadic tumours. The MEN1 gene located on 11q13 has recently been cloned and allelic deletion and mutation analysis studies have implicated the MEN1 gene in a significant fraction of the sporadic counterparts of typical MEN1 neoplasms (parathyroid tumours, insulinomas and gastrinomas). To determine if MEN1 gene inactivation is also involved in the development of sporadic pituitary adenomas, allelic deletions of chromosome 11q13 and MEN1 gene mutations and polymorphisms were assessed in 35 sporadic tumours of the anterior pituitary (9 prolactin-secreting, 8 GH-secreting, 3 TSH-secreting, 2 TSH/GH-secreting, 4 Cushing, 9 silent). Thirty-one tumours were found to be heterozygous for at least one MEN1 intragenic polymorphism (25 cases) or for a flanking gene polymorphism (6 cases). The remaining tumours were not informative. No mutations were found in any tumour except in one prolactinoma which was homozygous or hemizygous for a mutation (1-117 C-->T) in a region close to the promoter. Unfortunately, blood or normal tissue was not available in this case. Our data show that somatic MEN1 mutations do not contribute significantly to tumorigenesis of sporadic pituitary adenomas and suggest that mutation of other genes are likely to contribute to the pathogenesis of these tumours.  (+info)