(1/86) blaCTX-M-2 is located in an unusual class 1 integron (In35) which includes Orf513.

Examination of the bla(CTX-M-2) gene in plasmid pMAR-12 by sequencing and PCR analysis revealed that the bla gene and the surrounding DNA, which is closely related (99% homology) to the Kluyvera ascorbata chromosomal DNA that contains the bla(KLUA-1) gene, are located in a complex sul1-type integron, termed In35, that includes Orf513. It is possible that bla(CTX-M-2) was acquired by plasmid pMAR-12 through an uncharacterized recombinational event in which Orf513 could be involved.  (+info)

(2/86) Molecular characterization of a novel, cadmium-inducible gene from the nematode Caenorhabditis elegans. A new gene that contributes to the resistance to cadmium toxicity.

Cadmium is an environmental contaminant that is both a human toxicant and carcinogen. To inhibit cadmium-induced damage, cells respond by increasing the expression of genes that encode stress-response proteins. We previously reported the identification of 48 cadmium-inducible mRNAs in the nematode Caenorhabditis elegans. Here we describe a new cadmium-responsive gene, designated cdr-1, whose rate and level of inducible expression parallel those of the C. elegans metallothioneins. The CDR-1 mRNA contains an open reading frame of 831 bp and encodes a predicted 32-kDa, integral membrane protein. Following cadmium exposure, cdr-1 is transcribed exclusively in intestinal cells of post-embryonic C. elegans. In vivo, the CDR-1 protein is targeted specifically to the intestinal cell lysosomes. cdr-1 transcription is significantly induced by cadmium but not by other tested stressors. These results indicate that cdr-1 expression is regulated by cadmium and in a cell-specific fashion. Inhibition of CDR-1 expression renders C. elegans susceptible to cadmium toxicity. In conclusion, cdr-1 defines a new class of cadmium-inducible genes and encodes an integral membrane, lysosomal protein. This protein functions to protect against cadmium toxicity.  (+info)

(3/86) Characterization of four murine homologs of the human ov-serpin monocyte neutrophil elastase inhibitor MNEI (SERPINB1).

The human ov-serpin monocyte neutrophil elastase inhibitor (MNEI) is encoded by a single gene SERPINB1. It is a highly efficient inhibitor of neutrophil granule proteases. Four murine genes with high sequence identity with MNEI were identified and fully sequenced, and these were named EIA, EIB, EIC, and EID. EIA, EIB and EIC showed the same seven-exon gene structure as SERPINB1. However, EIC included an additional, alternatively spliced, exon due to the insertion of an endogenous retrovirus-like sequence. EID lacked several exons and is a pseudogene. Reverse transcriptase-PCR showed that EIA, like MNEI, is expressed at high levels in many tissues. EIB is mainly expressed in brain, and EIC was only expressed as splicing variants unlikely to encode a functional serpin. Upon incubation with serine proteases, EIA formed inhibitory covalent complexes with pancreatic and neutrophil elastases, cathepsin G, proteinase-3, and chymotrypsin, as previously shown for MNEI, whereas EIB was only able to do so with cathepsin G. According to the new serpin nomenclature, the genes encoding EIA, EIB, EIC, and EID will be called Serpinb1, Serpinb1b, Serpinb1c, and Serpinb1-ps1. These data demonstrate that the four murine homologs of MNEI have met different evolutionary fates, and that EIA is the mouse ortholog of MNEI.  (+info)

(4/86) Genetic structure and distribution of four pathogenicity islands (PAI I(536) to PAI IV(536)) of uropathogenic Escherichia coli strain 536.

For the uropathogenic Escherichia coli strain 536 (O6:K15:H31), the DNA sequences of three pathogenicity islands (PAIs) (PAI I(536) to PAI III(536)) and their flanking regions (about 270 kb) were determined to further characterize the virulence potential of this strain. PAI I(536) to PAI III(536) exhibit features typical of PAIs, such as (i) association with tRNA-encoding genes; (ii) G+C content differing from that of the host genome; (iii) flanking repeat structures; (iv) a mosaic-like structure comprising a multitude of functional, truncated, and nonfunctional putative open reading frames (ORFs) with known or unknown functions; and (v) the presence of many fragments of mobile genetic elements. PAI I(536) to PAI III(536) range between 68 and 102 kb in size. Although these islands contain several ORFs and known virulence determinants described for PAIs of other extraintestinal pathogenic E. coli (ExPEC) isolates, they also consist of as-yet-unidentified ORFs encoding putative virulence factors. The genetic structure of PAI IV(536), which represents the core element of the so-called high-pathogenicity island encoding a siderophore system initially identified in pathogenic yersiniae, was further characterized by sample sequencing. For the first time, multiple PAI sequences (PAI I(536) to PAI IV(536)) in uropathogenic E. coli were studied and their presence in several wild-type E. coli isolates was extensively investigated. The results obtained suggest that these PAIs or at least large fragments thereof are detectable in other pathogenic E. coli isolates. These results support our view that the acquisition of large DNA regions, such as PAIs, by horizontal gene transfer is an important factor for the evolution of bacterial pathogens.  (+info)

(5/86) Characterization of mouse profilaggrin: evidence for nuclear engulfment and translocation of the profilaggrin B-domain during epidermal differentiation.

Filaggrin is a keratin filament associated protein that is expressed in granular layer keratinocytes and derived by sequential proteolysis from a polyprotein precursor termed profilaggrin. Depending on the species, each profilaggrin molecule contains between 10 and 20 filaggrin subunits organized as tandem repeats with a calcium-binding domain at the N- terminal end. We now report the characterization of the complete mouse gene. The structural organization of the mouse gene is identical to the human profilaggrin gene and consists of three exons with a 4 kb intron within the 5' noncoding region and a 1.7 kb intron separating the sequences encoding the calcium-binding EF-hand motifs. A processed pseudogene was found embedded within the second intron. The third and largest exon encodes the second EF-hand, a basic domain (designated the B-domain) followed by 12 filaggrin repeats and a unique C-terminal tail domain. A polyclonal antibody raised against the conceptually translated sequence of the B-domain specifically stained keratohyalin granules and colocalized with a filaggrin antibody in granular layer cells. In upper granular layer cells, B-domain containing keratohyalin granules were in close apposition to the nucleus and, in some cells, appeared to be completely engulfed by the nucleus. In transition layer cells, B-domain staining was evident in the nucleus whereas filaggrin staining remained cytoplasmic. Nuclear staining of the B-domain was also observed in primary mouse keratinocytes induced to differentiate. This study has also revealed significant sequence homology between the mouse and human promoter sequences and in the calcium-binding domain but the remainder of the protein-coding region shows substantial divergence.  (+info)

(6/86) Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli.

We present the complete genome sequence of uropathogenic Escherichia coli, strain CFT073. A three-way genome comparison of the CFT073, enterohemorrhagic E. coli EDL933, and laboratory strain MG1655 reveals that, amazingly, only 39.2% of their combined (nonredundant) set of proteins actually are common to all three strains. The pathogen genomes are as different from each other as each pathogen is from the benign strain. The difference in disease potential between O157:H7 and CFT073 is reflected in the absence of genes for type III secretion system or phage- and plasmid-encoded toxins found in some classes of diarrheagenic E. coli. The CFT073 genome is particularly rich in genes that encode potential fimbrial adhesins, autotransporters, iron-sequestration systems, and phase-switch recombinases. Striking differences exist between the large pathogenicity islands of CFT073 and two other well-studied uropathogenic E. coli strains, J96 and 536. Comparisons indicate that extraintestinal pathogenic E. coli arose independently from multiple clonal lineages. The different E. coli pathotypes have maintained a remarkable synteny of common, vertically evolved genes, whereas many islands interrupting this common backbone have been acquired by different horizontal transfer events in each strain.  (+info)

(7/86) Hierarchical modeling of linkage disequilibrium: genetic structure and spatial relations.

Linkage disequilibrium (LD) mapping offers much promise for the positional cloning of disease-causing genes. However, conventional estimates of LD may fluctuate substantially across contiguous genomic regions, because of population-specific phenomena such as mutation, genetic drift, population structure, and variations in allele frequencies. This fluctuation makes it difficult to interpret patterns of LD and distinguish where a causal gene is located. To address this issue, we propose hierarchical modeling of LD (HLD) for fine-scale mapping. This approach incorporates information on haplotype block structure and chromosomal spatial relations to refine the pattern of LD, increasing the ability to localize disease genes. Here, we present a framework for HLD, a simulation study assessing the performance of HLD under various scenarios, and an application of HLD to existing data. This work demonstrates that hierarchical modeling of linkage disequilibrium is a valuable and flexible approach for fine-scale mapping.  (+info)

(8/86) c-Myc-induced extrachromosomal elements carry active chromatin.

Murine Pre-B lymphocytes with experimentally activated MycER show both chromosomal and extrachromosomal gene amplification. In this report, we have elucidated the size, structure, and functional components of c-Myc-induced extrachromosomal elements (EEs). Scanning electron microscopy revealed that EEs isolated from MycER-activated Pre-B+ cells are an average of 10 times larger than EEs isolated from non-MycER-activated control Pre-B- cells. We demonstrate that these large c-Myc-induced EEs are associated with histone proteins, whereas EEs of non-MycER-activated Pre B- cells are not. Immunohistochemistry and Western blot analyses using pan-histone-specific, histone H3 phosphorylation-specific, and histone H4 acetylation-specific antibodies indicate that a significant proportion of EEs analyzed from MycER-activated cells harbors transcriptionally competent and/or active chromatin. Moreover, these large, c-Myc-induced EEs carry genes. Whereas the total genetic make-up of these c-Myc-induced EEs is unknown, we found that 30.2% of them contain the dihydrofolate reductase (DHFR) gene, whereas cyclin C (CCNC) was absent. In addition, 50% of these c-Myc-activated Pre-B+ EEs incorporated bromodeoxyuridine (BrdU), identifying them as genetic structures that self-propagate. In contrast, EEs isolated from non-Myc-activated cells neither carry the DHFR gene nor incorporate BrdU, suggesting that c-Myc deregulation generates a new class of EEs.  (+info)