Divergent evolution during an experimental adaptive radiation. (25/553)

How repeatable a process is evolution? Comparative studies of multicellular eukaryotes and experimental studies with unicellular prokaryotes document the repeated evolution of adaptive phenotypes during similar adaptive radiations, suggesting that the outcome of adaptive radiation is broadly reproducible. The goal of this study was to test this hypothesis by using phenotypic traits to infer the genetic basis of adaptation to simple carbon-limited environments in an extensive adaptive radiation. We used a clone of the bacterium Pseudomonas fluorescens to found two sets of experimental lines. The first set of lines was allowed to adapt to one of 23 novel environments for 1100 generations while the second set of lines was allowed to accumulate mutations by drift for 2000 generations. All lines were then assayed in the 95 environments provided by Biolog microplates to determine the phenotypic consequences of selection and drift. Replicate selection lines propagated in a common environment evolved similar adaptive components of their phenotype but showed extensive variation in non-adaptive phenotypic traits. This variation in non-adaptive phenotypic traits primarily resulted from the ascendance of different beneficial mutations in different lines. We argue that these results reconcile experimental and comparative approaches to studying adaptation by demonstrating that the convergent phenotypic evolution that occurs during adaptive radiation may be associated with radically different sets of beneficial mutations.  (+info)

Regional subdivision in wild barley allozyme variation: adaptive or neutral? (26/553)

We examined the adaptive importance of allozyme variation in wild barley (Hordeum spontaneum). The test involved a nested sampling design with four population groups, each representing a different environment, and a comparison of observed allozyme variation with that expected under the assumption that allozymes are not neutral. Measurements of plant fitness in indigenous and alien environments in reciprocal introductions of seeds and seedlings in the four environments provided a guideline for the expected pattern of allozyme variation. The results showed considerable variation in both the degree of regional and population subdivision and the pattern of the subdivision among loci. The observed pattern of variation was ambiguous. Although two alleles exhibited a pattern of distribution that cannot be explained by genetic drift as a function of geographic distance, we failed to detect either a significant relationship between genetic distance and environmental similarity or any favored epistatic allele combinations across the four environments. Our results suggest that interpretation of allozyme variation in wild barley as adaptive and directly related to local environment still needs justification. Although we could not reject the null hypothesis, a proposed methodology seeking a concordance between observed and "adaptive" (i.e., expected under hypothesis that allozymes are not neutral) allozyme variation may prove to be effective in resolving the neutralist-selectionist debate when applied to other species.  (+info)

Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. (27/553)

We describe extensions to the method of Pritchard et al. for inferring population structure from multilocus genotype data. Most importantly, we develop methods that allow for linkage between loci. The new model accounts for the correlations between linked loci that arise in admixed populations ("admixture linkage disequilibium"). This modification has several advantages, allowing (1) detection of admixture events farther back into the past, (2) inference of the population of origin of chromosomal regions, and (3) more accurate estimates of statistical uncertainty when linked loci are used. It is also of potential use for admixture mapping. In addition, we describe a new prior model for the allele frequencies within each population, which allows identification of subtle population subdivisions that were not detectable using the existing method. We present results applying the new methods to study admixture in African-Americans, recombination in Helicobacter pylori, and drift in populations of Drosophila melanogaster. The methods are implemented in a program, structure, version 2.0, which is available at http://pritch.bsd.uchicago.edu.  (+info)

The effect of neutral nonadditive gene action on the quantitative index of population divergence. (28/553)

For neutral additive genes, the quantitative index of population divergence (Q(ST)) is equivalent to Wright's fixation index (F(ST)). Thus, divergent or convergent selection is usually invoked, respectively, as a cause of the observed increase (Q(ST) > F(ST)) or decrease (Q(ST) < F(ST)) of Q(ST) from its neutral expectation (Q(ST) = F(ST)). However, neutral nonadditive gene action can mimic the additive expectations under selection. We have studied theoretically the effect of consecutive population bottlenecks on the difference F(ST) - Q(ST) for two neutral biallelic epistatic loci, covering all types of marginal gene action. With simple dominance, Q(ST) < F(ST) for only low to moderate frequencies of the recessive alleles; otherwise, Q(ST) > F(ST). Additional epistasis extends the condition Q(ST) < F(ST) to a broader range of frequencies. Irrespective of the type of nonadditive action, Q(ST) < F(ST) generally implies an increase of both the within-line additive variance after bottlenecks over its ancestral value (V(A)) and the between-line variance over its additive expectation (2F(ST)V(A)). Thus, both the redistribution of the genetic variance after bottlenecks and the F(ST) - Q(ST) value are governed largely by the marginal properties of single loci. The results indicate that the use of the F(ST) - Q(ST) criterion to investigate the relative importance of drift and selection in population differentiation should be restricted to pure additive traits.  (+info)

Temporal analysis of archived samples indicates marked genetic changes in declining North Sea cod (Gadus morhua). (29/553)

Despite increasing evidence that current exploitation rates can contribute to shifts in life-history traits and the collapse of marine fish stocks, few empirical studies have investigated the likely evolutionary impacts. Here, we used DNA recovered from a temporal series of archived North Sea cod (Gadus morhua) otoliths, to investigate genetic diversity within the Flamborough Head population between 1954 and 1998, during which time the population underwent two successive declines. Microsatellite data indicated a significant reduction in genetic diversity between 1954 and 1970 (total number of alleles: 1954, 46; 1960, 42; 1970, 37), and a subsequent recovery between 1970 and 1998 (total number of alleles: 1970, 37; 1981, 42; 1998, 45). Furthermore, estimates of genetic differentiation (F(ST) and R(ST)) showed a significant divergence between 1998 and earlier samples. Data are consistent with a period of prolonged genetic drift, accompanied by a replacement of the Flamborough Head population through an increased effective migration rate that occurred during a period of high exploitation and appreciable demographic and phenotypic change. Other studies indicate that diversity at neutral microsatellite loci may be correlated with variability at selected genes, thus compromising a population's subsequent recovery and adaptive potential. Such effects are especially pertinent to North Sea cod, which are threatened by continuing exploitation and rising sea temperatures.  (+info)

Consequences of recurrent gene flow from crops to wild relatives. (30/553)

Concern about gene flow from crops to wild relatives has become widespread with the increasing cultivation of transgenic crops. Possible consequences of such gene flow include genetic assimilation, wherein crop genes replace wild ones, and demographic swamping, wherein hybrids are less fertile than their wild parents, and wild populations shrink. Using mathematical models of a wild population recurrently receiving pollen from a genetically fixed crop, we find that the conditions for genetic assimilation are not stringent, and progress towards replacement can be fast, even for disfavoured crop genes. Demographic swamping and genetic drift relax the conditions for genetic assimilation and speed progress towards replacement. Genetic assimilation can involve thresholds and hysteresis, such that a small increase in immigration can lead to fixation of a disfavoured crop gene that had been maintained at a moderate frequency, even if the increase in immigration is cancelled before the gene fixes. Demographic swamping can give rise to 'migrational meltdown', such that a small increase in immigration can lead to not only fixation of a disfavoured crop gene but also drastic shrinkage of the wild population. These findings suggest that the spread of crop genes in wild populations should be monitored more closely.  (+info)

Impact of selection, mutation rate and genetic drift on human genetic variation. (31/553)

The accumulation of genome-wide information on single nucleotide polymorphisms in humans provides an unprecedented opportunity to detect the evolutionary forces responsible for heterogeneity of the level of genetic variability across loci. Previous studies have shown that history of recombination events has produced long haplotype blocks in the human genome, which contribute to this heterogeneity. Other factors, however, such as natural selection or the heterogeneity of mutation rates across loci, may also lead to heterogeneity of genetic variability. We compared synonymous and non-synonymous variability within human genes with their divergence from murine orthologs. We separately analyzed the non-synonymous variants predicted to damage protein structure or function and the variants predicted to be functionally benign. The predictions were based on comparative sequence analysis and, in some cases, on the analysis of protein structure. A strong correlation between non-synonymous, benign variability and non-synonymous human-mouse divergence suggests that selection played an important role in shaping the pattern of variability in coding regions of human genes. However, the lack of correlation between deleterious variability and evolutionary divergence shows that a substantial proportion of the observed non-synonymous single-nucleotide polymorphisms reduces fitness and never reaches fixation. Evolutionary and medical implications of the impact of selection on human polymorphisms are discussed.  (+info)

Genetic anthropology of the colorectal cancer-susceptibility allele APC I1307K: evidence of genetic drift within the Ashkenazim. (32/553)

The adenomatous polyposis coli (APC) I1307K allele is found in 6% of the Ashkenazi Jewish population and in 1%-2% of Sephardi Jews; it confers a relative risk of 1.5-2.0 for colorectal cancer (CRC) on all carriers. Within the Ashkenazim, the existence of numerous high-prevalence mutations, including I1307K, has sparked controversy over whether genetic drift or selection is the underlying cause. For the present population-based case-control study of CRC in Israel, we tested whether selection has operated at I1307K. We also estimated the age of the I1307K allele, to understand its origin in the context of the Jewish diasporas and subsequent founder events. We genotyped 83 matched pairs, in which one or both members of the pair carried I1307K, at three microsatellites and two SNPs. Haplotypes were statistically constructed using PHASE software. Single-marker age estimates for I1307K were calculated using the approach described by Risch et al. A common progenitor haplotype spanned across APC I1307K from the centromeric marker D5S135 to the telomeric marker D5S346 and was observed in individuals of Ashkenazi, Sephardi, and Arab descent. The ancestor of modern I1307K alleles existed 87.9-118 generations ago ( approximately 2,200-2,950 years ago). This age estimate indicates that I1307K existed at about the time of the beginning of the Jewish diaspora, explaining its presence in non-Ashkenazi populations. Our data do not indicate that selection operated at I1307K (D5S346, P=.114; D5S135, P=.373), providing compelling evidence that the high frequency of disease-susceptibility alleles in the Ashkenazim is due to genetic drift, not selection. This research underscores the importance of the migratory patterns of ancestral populations in the ethnic and geographic distribution of APC I1307K.  (+info)