Induction of ARF tumor suppressor gene expression and cell cycle arrest by transcription factor DMP1. (33/4864)

Expression of the DMP1 transcription factor, a cyclin D-binding Myb-like protein, induces growth arrest in mouse embryo fibroblast strains but is devoid of antiproliferative activity in primary diploid fibroblasts that lack the ARF tumor suppressor gene. DMP1 binds to a single canonical recognition site in the ARF promoter to activate gene expression, and in turn, p19(ARF) synthesis causes p53-dependent cell cycle arrest. Unlike genes such as Myc, adenovirus E1A, and E2F-1, which, when overexpressed, activate the ARF-p53 pathway and trigger apoptosis, DMP1, like ARF itself, does not induce programmed cell death. Therefore, apart from its recently recognized role in protecting cells from potentially oncogenic signals, ARF can be induced in response to antiproliferative stimuli that do not obligatorily lead to apoptosis.  (+info)

Mutation analysis of the Fanconi anaemia A gene in breast tumours with loss of heterozygosity at 16q24.3. (34/4864)

The recently identified Fanconi anaemia A (FAA) gene is located on chromosomal band 16q24.3 within a region that has been frequently reported to show loss of heterozygosity (LOH) in breast cancer. FAA mutation analysis of 19 breast tumours with specific LOH at 16q24.3 was performed. Single-stranded conformational polymorphism (SSCP) analysis on cDNA and genomic DNA, and Southern blotting failed to identify any tumour-specific mutations. Five polymorphisms were identified, but frequencies of occurrence did not deviate from those in a normal control population. Therefore, the FAA gene is not the gene targeted by LOH at 16q24.3 in breast cancer. Another tumour suppressor gene in this chromosomal region remains to be identified.  (+info)

Intracerebral adenovirus-mediated p53 tumor suppressor gene therapy for experimental human glioma. (35/4864)

Malignant gliomas of astrocytic origin are good candidates for gene therapy because they have proven incurable with conventional treatments. Although mutation or inactivation of the p53 tumor suppressor gene occurs at early stages in gliomas and is associated with tumor progression, many tumors including high-grade glioblastoma multiforme carry a functionally intact p53 gene. To evaluate the effectiveness of p53-based therapy in glioma cells that contain endogenous wild-type p53, a clinically relevant model of malignant human glioma was established in athymic nu/nu mice. Intracerebral, rapidly growing tumors were produced by stereotactic injection of the human U87 MG glioma cell line that had been genetically modified for tracking purposes to express the Escherichia coli lacZ gene encoding beta-galactosidase. Overexpression of the p53 gene by adenovirus-mediated delivery into the tumor mass resulted in rapid cell death with the eradication of beta-galactosidase-expressing glioma cells through apoptosis. In long-term experiments, the survival of mice treated with the p53 adenoviral recombinant was significantly longer than that of mice that had received control adenoviral recombinant. During the observation period of 1 year, a complete cure was achieved in 27% of animals after a single injection of p53 adenoviral recombinant, and 38% of the animals were tumor free in the group receiving multiple injections of p53 adenoviral recombinant into a larger tumor mass. These experiments demonstrate that overexpression of p53 in gliomas, even in the presence of endogenous functional wildtype p53, leads to efficient elimination of tumor cells. These results point to the potential therapeutic usefulness of this approach for all astrocytic brain tumors.  (+info)

Alternate choice of initiation codon produces a biologically active product of the von Hippel Lindau gene with tumor suppressor activity. (36/4864)

The VHL tumor suppressor gene has previously been reported to encode a protein of 213 amino acid residues. Here we report the identification of a second major VHL gene product with an apparent molecular weight of 18 kD, pVHL18, which appears to arise from alternate translation initiation at a second AUG codon (codon 54) within the VHL open reading frame. In vitro and in vivo studies indicate that the internal codon in the VHL mRNA is necessary and sufficient for production of pVHL18. pVHL18 can bind to elongin B, elongin C, and Hs-CUL2. When reintroduced into renal carcinoma cells that lack a wild-type VHL allele, pVHL18 suppresses basal levels of VEGF expression, restores hypoxia-inducibility of VEGF expression, and inhibits tumor formation in nude mice. These data strongly support the existence of two distinct VHL gene products in VHL tumor suppression.  (+info)

Overexpression of the wild type p73 gene in human bladder cancer. (37/4864)

p73, a first p53 relative, was recently identified and shown to be monoallelically expressed in a number of different human tissues. To determine the potential role of this gene in human bladder cancer, we investigated p73 expression levels, allelic expression patterns, and analysed p73 mutations in 23 unselected primary invasive bladder cancers with matched normal tissues and in seven bladder cancer cell lines. In a comparison between normal and tumor tissues using quantitative RT-PCR analysis, we found that p73 was overexpressed in 22/23 bladder cancers, sometimes as great as 20-fold. Allelic expression analysis using a C/T polymorphism in exon 2 and a newly identified T/C polymorphism in exon 5 revealed that p73 was biallelically expressed in both normal bladder and cancer tissues, suggesting that p73 is not imprinted in bladder tissue. Mutation screening of the p73 gene in bladder cancer DNAs using denaturing high-performance liquid chromatography analysis and DNA sequencing revealed no tumor-specific mutations in any coding exons of the p73 gene. These data suggest that the p73 is unlikely to be a tumor suppressor gene, but that overexpression of p73 may contribute to tumorigenesis in bladder cancer.  (+info)

Mutation in the PTEN/MMAC1 gene in archival low grade and high grade gliomas. (38/4864)

The PTEN gene, located on 10q23.3, has recently been described as a candidate tumour suppressor gene that may be important in the development of advanced cancers, including gliomas. We have investigated mutation in the PTEN gene by direct sequence analysis of PCR products amplified from samples microdissected from 19 low grade (WHO Grade I and II) and 27 high grade (WHO grade III and IV) archival, formalin-fixed, paraffin-embedded gliomas. Eleven genetic variants in ten tumours have been identified. Eight of these are DNA sequence changes that could affect the encoded protein and were present in 0/2 pilocytic astrocytomas, 0/2 oligoastrocytomas, 0/1 oligodendroglioma, 0/14 astrocytomas, 3/13 (23%) anaplastic astrocytomas and 5/14 (36%) glioblastomas. PTEN mutations were found exclusively in high grade gliomas; this finding was statistically significant. Only two of the PTEN genetic variants have been reported in other studies; two of the genetic changes are in codons in which mutations have not been found previously. The results of this study indicate that mutation in the PTEN gene is present only in histologically more aggressive gliomas, may be associated with the transition from low histological grade to anaplasia, but is absent from the majority of high grade gliomas.  (+info)

New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway. (39/4864)

The most recently discovered PTEN tumor suppressor gene has been found to be defective in a large number of human cancers. In addition, germ-line mutations in PTEN result in the dominantly inherited disease Cowden syndrome, which is characterized by multiple hamartomas and a high proclivity for developing cancer. A series of publications over the past year now suggest a mechanism by which PTEN loss of function results in tumors. PTEN appears to negatively control the phosphoinositide 3-kinase signaling pathway for regulation of cell growth and survival by dephosphorylating the 3 position of phosphoinositides.  (+info)

Expression of the antiproliferative gene TIS21 at the onset of neurogenesis identifies single neuroepithelial cells that switch from proliferative to neuron-generating division. (40/4864)

At the onset of mammalian neurogenesis, neuroepithelial (NE) cells switch from proliferative to neuron-generating divisions. Understanding the molecular basis of this switch requires the ability to distinguish between these two types of division. Here we show that in the mouse ventricular zone, expression of the mRNA of the antiproliferative gene TIS21 (PC3, BTG2) (i) starts at the onset of neurogenesis, (ii) is confined to a subpopulation of NE cells that increases in correlation with the progression of neurogenesis, and (iii) is not detected in newborn neurons. Expression of the TIS21 mRNA in the NE cells occurs transiently during the cell cycle, i.e., in the G1 phase. In contrast to the TIS21 mRNA, the TIS21 protein persists through the division of NE cells and is inherited by the neurons, where it remains detectable during neuronal migration and the initial phase of differentiation. Our observations indicate that the TIS21 gene is specifically expressed in those NE cells that, at their next division, will generate postmitotic neurons, but not in proliferating NE cells. Using TIS21 as a marker, we find that the switch from proliferative to neuron-generating divisions is initiated in single NE cells rather than in synchronized neighboring cells.  (+info)