Evaluation of 16S, map1 and pCS20 probes for detection of Cowdria and Ehrlichia species. (73/3473)

A panel of 16S ribosomal RNA gene probes has been developed for the study of the epidemiology of heartwater; five of these detect different cowdria genotypes, one detects five distinct genotypes; one detects any Group III Ehrlichia species other than Cowdria and one detects any Group II Ehrlichia species. These probes have been used on PCR-amplified rickettsial 16S rRNA genes from over 200 Amblyomma hebraeum ticks. Control ticks were laboratory-reared and either uninfected or fed on sheep experimentally infected with different cowdria isolates, field ticks were collected from animals in heartwater-endemic areas. All tick-derived DNA samples were also examined by PCR amplification and probing for two other cowdria genes (map1 and pCS20) which have previously been used for heartwater epidemiology. This paper describes the first direct comparison of all currently available DNA probes for heartwater-associated organisms.  (+info)

16S rRNA gene sequence analysis of Photobacterium damselae and nested PCR method for rapid detection of the causative agent of fish pasteurellosis. (74/3473)

The causative agent of fish pasteurellosis, the organism formerly known as Pasteurella piscicida, has been reclassified as Photobacterium damselae subsp. piscicida on the basis of 16S rRNA gene sequence comparisons and chromosomal DNA-DNA hybridization data; thus, this organism belongs to the same species as Photobacterium damselae subsp. damselae (formerly Vibrio damselae). Since reassignment of P. damselae subsp. piscicida was based on only two strains, one objective of the present work was to confirm the taxonomic position of this fish pathogen by sequencing the 16S rRNA genes of 26 strains having different geographic and host origins. In addition, a nested PCR protocol for detection of P. damselae based on 16S rRNA was developed. This PCR protocol was validated by testing 35 target and 24 nontarget pure cultures, and the detection limits obtained ranged from 1 pg to 10 fg of DNA (200 to 20 cells). A similar level of sensitivity was observed when the PCR protocol was applied to fish tissues spiked with bacteria. The PCR approach described in this paper allows detection of the pathogen in mixed plate cultures obtained from asymptomatic fish suspected to be carriers of P. damselae subsp. piscicida, in which growth of this bacterium cannot be visualized. Our results indicate that the selective primers which we designed represent a powerful tool for sensitive and specific detection of fish pasteurellosis.  (+info)

Comparative diversity of ammonia oxidizer 16S rRNA gene sequences in native, tilled, and successional soils. (75/3473)

Autotrophic ammonia oxidizer (AAO) populations in soils from native, tilled, and successional treatments at the Kellogg Biological Station Long-Term Ecological Research site in southwestern Michigan were compared to assess effects of disturbance on these bacteria. N fertilization effects on AAO populations were also evaluated with soils from fertilized microplots within the successional treatments. Population structures were characterized by PCR amplification of microbial community DNA with group-specific 16S rRNA gene (rDNA) primers, cloning of PCR products and clone hybridizations with group-specific probes, phylogenetic analysis of partial 16S rDNA sequences, and denaturing gradient gel electrophoresis (DGGE) analysis. Population sizes were estimated by using most-probable-number (MPN) media containing varied concentrations of ammonium sulfate. Tilled soils contained higher numbers than did native soils of culturable AAOs that were less sensitive to different ammonium concentrations in MPN media. Compared to sequences from native soils, partial 16S rDNA sequences from tilled soils were less diverse and grouped exclusively within Nitrosospira cluster 3. Native soils yielded sequences representing three different AAO clusters. Probes for Nitrosospira cluster 3 hybridized with DGGE blots from tilled and fertilized successional soils but not with blots from native or unfertilized successional soils. Hybridization results thus suggested a positive association between the Nitrosospira cluster 3 subgroup and soils amended with inorganic N. DGGE patterns for soils sampled from replicated plots of each treatment were nearly identical for tilled and native soils in both sampling years, indicating spatial and temporal reproducibility based on treatment.  (+info)

Photosynthetic bradyrhizobia from Aeschynomene spp. are specific to stem-nodulated species and form a separate 16S ribosomal DNA restriction fragment length polymorphism group. (76/3473)

We obtained nine bacterial isolates from root or collar nodules of the non-stem-nodulated Aeschynomene species A. elaphroxylon, A. uniflora, or A. schimperi and 69 root or stem nodule isolates from the stem-nodulated Aeschynomene species A. afraspera, A. ciliata, A. indica, A. nilotica, A. sensitiva, and A. tambacoundensis from various places in Senegal. These isolates, together with 45 previous isolates from various Aeschynomene species, were studied for host-specific nodulation within the genus Aeschynomene, also revisiting cross-inoculation groups described previously by D. Alazard (Appl. Environ. Microbiol. 50:732-734, 1985). The whole collection of Aeschynomene nodule isolates was screened for synthesis of photosynthetic pigments by spectrometry, high-pressure liquid chromatography, and thin-layer chromatography analyses. The presence of puf genes in photosynthetic Aeschynomene isolates was evidenced both by Southern hybridization with a Rhodobacter capsulatus photosynthetic gene probe and by DNA amplification with primers defined from photosynthetic genes. In addition, amplified 16S ribosomal DNA restriction analysis was performed on 45 Aeschynomene isolates, including strain BTAi1, and 19 reference strains from Bradyrhizobium japonicum, Bradyrhizobium elkanii, and other Bradyrhizobium sp. strains of uncertain taxonomic positions. The 16S rRNA gene sequence of the photosynthetic strain ORS278 (LMG 12187) was determined and compared to sequences from databases. Our main conclusion is that photosynthetic Aeschynomene nodule isolates share the ability to nodulate particular stem-nodulated species and form a separate subbranch on the Bradyrhizobium rRNA lineage, distinct from B. japonicum and B. elkanii.  (+info)

Formation of hyodeoxycholic acid from muricholic acid and hyocholic acid by an unidentified gram-positive rod termed HDCA-1 isolated from rat intestinal microflora. (77/3473)

From the rat intestinal microflora we isolated a gram-positive rod, termed HDCA-1, that is a member of a not previously described genomic species and that is able to transform the 3alpha,6beta, 7beta-trihydroxy bile acid beta-muricholic acid into hyodeoxycholic acid (3alpha,6alpha-dihydroxy acid) by dehydroxylation of the 7beta-hydroxy group and epimerization of the 6beta-hydroxy group into a 6alpha-hydroxy group. Other bile acids that were also transformed into hyodeoxycholic acid were hyocholic acid (3alpha, 6alpha,7alpha-trihydroxy acid), alpha-muricholic acid (3alpha,6beta, 7alpha-trihydroxy acid), and omega-muricholic acid (3alpha,6alpha, 7beta-trihydroxy acid). The strain HDCA-1 could not be grown unless a nonconjugated 7-hydroxylated bile acid and an unidentified growth factor produced by a Ruminococcus productus strain that was also isolated from the intestinal microflora were added to the culture medium. Germfree rats selectively associated with the strain HDCA-1 plus a bile acid-deconjugating strain and the growth factor-producing R. productus strain converted beta-muricholic acid almost completely into hyodeoxycholic acid.  (+info)

Increased rrn gene dosage causes intermittent transcription of rRNA in Escherichia coli. (78/3473)

When the number of rRNA (rrn) operons in an Escherichia coli cells is increased by adding an rrn operon on a multicopy plasmid, the rate of rRNA expression per operon is reduced to maintain a constant concentration of rRNA in the cell. We have used electron microscopy to examine rRNA transcription in cells containing a multicopy plasmid carrying rrnB. We found that there were fewer RNA polymerase molecules transcribing the rrn genes, as predicted from previous gene dosage studies. Furthermore, RNA polymerase molecules were arranged in irregularly spaced groups along the operon. No apparent pause or transcription termination sites that would account for the irregular spacing of the groups of polymerase molecules were observed. We also found that the overall transcription elongation rate was unchanged when the rrn gene dosage was increased. Our data suggest that when rrn gene dosage is increased, initiation events, or promoter-proximal elongation events, are interrupted at irregular time intervals.  (+info)

Abiotrophia elegans strains comprise 8% of the nutritionally variant streptococci isolated from the human mouth. (79/3473)

Ninety-one isolates of nutritionally variant streptococci (NVS) that were previously isolated from the human mouth were regarded as consisting of 7 Streptococcus defectivus isolates, 78 Streptococcus adjacens isolates, and 6 Gemella morbillorum isolates. However, recent references to the taxonomic reclassification of NVS, from S. defectivus to Abiotrophia defectiva and from S. adjacens to Abiotrophia adiacens, and the newly introduced species Abiotrophia elegans as a third Abiotrophia species, emphasize the need for genetic analyses for identification of NVS. When PCR-restriction fragment length polymorphism (RFLP) and phylogenetic distances were examined based on 16S rRNA gene sequences, the results indicated that 7 of the 91 NVS isolates were closely related to A. elegans. These seven isolates consisted of four isolates previously identified as G. morbillorum and three isolates previously identified as S. adjacens. Two isolates previously identified as G. morbillorum were related to A. adiacens. In biochemical tests, A. elegans and the seven isolates related to it possessed arginine dihydrolase (ADH) activity but the other Abiotrophia species did not. As a result, A. elegans strains comprised 8% of the 91 NVS isolates. Our findings suggest that A. elegans, A. adiacens, and A. defectiva exist in the human mouth in proportions of about 1:11:1 and that A. elegans can be genetically distinguished from the other two Abiotrophia species by PCR-RFLP analysis of 16S rRNA gene sequences and can be biochemically distinguished by ADH activity.  (+info)

Detection of Staphylococcus aureus and Staphylococcus epidermidis in clinical samples by 16S rRNA-directed in situ hybridization. (80/3473)

Staphylococcus epidermidis and Staphylococcus aureus are the most common causes of medical device-associated infections, including septicemic loosenings of orthopedic implants. Frequently, the microbiological diagnosis of these infections remains ambiguous, since at least some staphylococci have the capacity to reduce their growth rate considerably. These strains exhibit a small-colony phenotype, and often they are not detectable by conventional microbiological techniques. Moreover, clinical isolates of S. aureus and S. epidermidis adhere to polymer and metal surfaces by the generation of thick, multilayered biofilms consisting of bacteria and extracellular polysaccharides. This study reports improved detection and identification of S. aureus and S. epidermidis by an in situ hybridization method with fluorescence-labeled oligonucleotide probes specific for staphylococcal 16S rRNA. The technique has proven to be suitable for the in situ detection of staphylococci, which is illustrated by the identification of S. epidermidis in a connective tissue sample obtained from a patient with septicemic loosening of a hip arthroplasty. We also show that this technique allows the detection of intracellularly persisting bacteria, including small-colony variants of S. aureus, and the differentiation of S. epidermidis from other clinically relevant staphylococci even when they are embedded in biofilms. These results suggest that the 16S rRNA in situ hybridization technique could represent a powerful diagnostic tool for the detection and differentiation of many other fastidious microorganisms.  (+info)