Lipopolysaccharide-activated kinase, an essential component for the induction of the antimicrobial peptide genes in Drosophila melanogaster cells. (1/36)

Eukaryotic organisms use a similar Rel/NF-kappaB signaling cascade for the induction of innate immune genes. In Drosophila, lipopolysaccharide (LPS) signal-induced activation of the Rel/NF-kappaB family transcription factors is an essential step in the transcriptional activation of inducible antimicrobial peptide genes. However, the mechanism by which the LPS-induced signaling pathway proceeds remains largely unknown. Here we have cloned a novel Drosophila LPS-activated kinase (DLAK) that is structurally related to mammalian IkappaB kinases. DLAK is expressed and transiently activated in LPS-responsive Drosophila cells following LPS stimulation. Furthermore, DLAK can interact with Cactus, a Drosophila IkappaB and phosphorylate recombinant Cactus, in vitro. Overexpression of dominant-negative mutant DLAK (DLAK(K50A)) blocks LPS-induced Cactus degradation. DLAK-bound Cactus can be degraded in a LPS signal-dependent fashion, whereas the DLAK(K50A) mutant-bound Cactus is completely resistant to degradation in the presence of LPS. The DLAK(K50A) mutant also inhibits nuclear kappaB binding activity and kappaB-dependent diptericin reporter gene activity in a dose-dependent manner, but the kappaB-dependent diptericin reporter gene activity can be rescued by overexpression of wild type DLAK. Moreover, mRNA analysis of various kappaB-dependent antimicrobial peptide genes shows that LPS inducibility of these genes is greatly impaired in cells overexpressing DLAK(K50A). These results establish that DLAK is a novel LPS-activated kinase, which is an essential signaling component for the induction of antimicrobial peptide genes following LPS treatment in Drosophila cells.  (+info)

Cytoplasmic sequestration of rel proteins by IkappaBalpha requires CRM1-dependent nuclear export. (2/36)

Rel and IkappaB protein families form a complex cellular regulatory network. A major regulatory function of IkappaB proteins is to retain Rel proteins in the cell cytoplasm. In addition, IkappaB proteins have also been postulated to serve nuclear functions. These include the maintenance of inducible NF-kappaB-dependent gene transcription, as well as termination of inducible transcription. We show that IkappaBalpha shuttles between the nucleus and the cytoplasm, utilizing the nuclear export receptor CRM1. A CRM1-binding export sequence was identified in the N-terminal domain of IkappaBalpha but not in that of IkappaBbeta or IkappaBepsilon. By reconstituting major aspects of NF-kappaB-IkappaB sequestration in yeast, we demonstrate that cytoplasmic retention of p65 (also called RelA) by IkappaBalpha requires Crm1p-dependent nuclear export. In mammalian cells, inhibition of CRM1 by leptomycin B resulted in nuclear localization of cotransfected p65 and IkappaBalpha in COS cells and enhanced nuclear relocation of endogenous p65 in T cells. These observations suggest that the main function of IkappaBalpha is that of a nuclear export chaperone rather than a cytoplasmic tether. We propose that the nucleus is the major site of p65-IkappaBalpha association, from where these complexes must be exported in order to create the cytoplasmic pool.  (+info)

Nuclear factor-kappaB/Rel is apoptogenic in cytokine withdrawal-induced programmed cell death. (3/36)

In the complex microenvironment where they evolve, developing cells undergo rapid programmed cell death (PCD) when cytokines that support them become limiting. The transcriptional mechanisms of cytokine-withdrawal apoptosis are poorly understood. In this report, we used early B-lymphocyte tissue culture and transgenic cells to demonstrate that nuclear factor-kappaB (NF-kappaB) promotes apoptosis during cytokine withdrawal-induced PCD. In the progenitor B lymphocyte model FL5.12, whereas NF-kappaB has an antiapoptotic function in response to tumor necrosis factor-alpha, cytokine withdrawal causes nuclear translocation of NF-kappaB/cRel, where it is apoptogenic. Inhibition of NF-kappaB activation delays cytokine withdrawal-induced PCD in both FL5.12 and transgenic early B cells. Additionally, reconstituting a bone marrow microenvironment ex vivo abrogates the differential apoptotic pattern between control and transgenic early B cells.  (+info)

Tumor necrosis factor-alpha activation of NF-kappa B requires the phosphorylation of Ser-471 in the transactivation domain of c-Rel. (4/36)

Activation of the transcription factor NF-kappaB is controlled at two levels in resting T cells: an initial activation induced by the triggering of the TcR.CD3 complex and a second phase controlled by paracrine- or autocrine-secreted TNFalpha. The initial phase is regulated by p65 (RelA), whereas the second one is mainly dependent on c-Rel. We describe here a mutant clone, D6, derived from the parental T lymphoblastic line Jurkat that fails to activate NF-kappaB upon TNFalpha stimulation. This clone had no alteration in tumor necrosis factor-alpha (TNFalpha) signaling pathways nor in IkappaBalpha, -beta, or -epsilon expression and degradation. However, TNFalpha induced an exacerbated apoptotic response in this clone compared with Jurkat cells. This mutant clone showed a defect in the intermediate-late translocation of c-Rel to the nucleus promoted by TNFalpha stimulation, whereas early translocation is not affected. Activation or translocation of p65-containing complexes was not altered in this mutant clone. Sequencing of the c-Rel gene from this clone revealed a mutation of Ser-471 to Asn in the transactivation domain. The mutant S471N transactivation domain fused to the Gal4 DNA binding domain could not be activated by TNFalpha, unlike the wild type. Moreover, the overexpression of the mutant protein c-Rel S471N into Jurkat cells abolished TNFalpha-induced NF-kappaB activity, thus demonstrating that this mutation is responsible for the failure of TNFalpha stimulation of NF-kappaB. Moreover, extracts from TNFalpha-stimulated Jurkat cells phosphorylated in vitro recombinant wild type GST-c-Rel 464-481 but not the GST-c-Rel mutant. Thus, TNFalpha-induced phosphorylation of Ser-471 seems to be absolutely necessary for TNFalpha activation of c-Rel.  (+info)

Molecular cloning and characterization of SRAM, a novel insect rel/ankyrin-family protein present in nuclei. (5/36)

Previously, we purified a 59-kDa protein that binds to the kappaB motif of the Sarcophaga lectin gene. Here we report its cDNA cloning and some of its characteristics as a novel member of the Rel/Ankyrin-family. This protein, named SRAM, contained a Rel homology domain, a nuclear localization signal and 4 ankyrin repeats, but lacked the Ser-rich domain and PEST sequence that Relish contained. We found that SRAM was localized in the nuclei of NIH-Sape-4 cells, which are an embryonic cell line of Sarcophaga. The Sarcophaga lectin gene promoter containing tandem repeats of the kappaB motifs was activated in NIH-Sape-4 cells. In Drosophila mbn-2 cells, Dif alone activated this reporter gene and a cooperative effect was detected when SRAM and Dif were co-transfected, although SRAM alone did not activate it. This is the first report of a Rel/Ankyrin molecule that exists in the nuclei.  (+info)

Distinct roles for the NF-kappaB1 (p50) and c-Rel transcription factors in inflammatory arthritis. (6/36)

Rheumatoid arthritis (RA) is a complex disease, with contributions from systemic autoimmunity and local inflammation. Persistent synovial joint inflammation and invasive synovial pannus tissue lead to joint destruction. RA is characterized by the production of inflammatory mediators, many of which are regulated by the Rel/NF-kappaB transcription factors. Although an attractive target for therapeutic intervention in inflammatory diseases, Rel/NF-kappaB is involved in normal physiology, thus global inhibition could be harmful. An alternate approach is to identify and target the Rel/NF-kappaB subunits critical for components of disease. To assess this, mice with null mutations in c-rel or nfkb1 were used to examine directly the roles of c-Rel and p50 in models of acute and chronic inflammatory arthritis. We found c-Rel-deficient mice were resistant to collagen-induced arthritis but had a normal response in an acute, destructive arthritis model (methylated BSA/IL-1 induced arthritis) suggesting c-Rel is required for systemic but not local joint disease. In contrast, p50-deficient mice were refractory to induction of both the chronic and acute arthritis models, showing this subunit is essential for local joint inflammation and destruction. Our data suggest Rel/NF-kappaB subunits play distinct roles in the pathogenesis of inflammatory arthritis and may provide a rationale for more specific therapeutic blockade of Rel/NF-kappaB in RA.  (+info)

Enhancement of cytosine arabinoside-induced apoptosis in human myeloblastic leukemia cells by NF-kappa B/Rel- specific decoy oligodeoxynucleotides. (7/36)

The activity of NF-kappa B/Rel nuclear factors is known to inhibit apoptosis in various cell types. We investigated whether the subtraction of NF-kappa B/Rel activity influenced the response of 11 AML (M1, M2 and M4) patients' cells to AraC. To this end we used a phosphorothioate double-stranded decoy oligodeoxynucleotide (ODN) carrying the NF-kappa B/Rel- consensus sequence. Cell incubation with this ODN, but not its mutated (scrambled) form used as a control, resulted in abating the NF-kappa B/Rel nuclear levels in these cells, as verified by electrophoretic mobility shift assay (EMSA) of cells' nuclear extracts. We incubated the leukemic cells with AraC (32 or 1 microM), in either the absence or presence of the decoy or the scrambled ODN, and analyzed cell apoptosis. The spontaneous cell apoptosis detectable in the absence of AraC (<25%) was not modulated by the oligonucleotide presence in cell cultures. On the other hand, in 10 of the 11 samples tested, the decoy kappa B, but not the scrambled ODN significantly (P < 0.01 in a Student's t test) enhanced cell apoptotic response to AraC. Such an effect was particularly remarkable at low AraC doses (1 microM). These findings indicate that NF-kappa B/Rel activity influences response to AraC in human primary myeloblastic cells, and suggests that the inhibition of NF-kappa B/Rel factors can improve the effect of chemotherapy in AML. Gene Therapy (2000) 7, 1234-1237.  (+info)

Evolutionary relationships among Rel domains indicate functional diversification by recombination. (8/36)

The recent sequencing of several complete genomes has made it possible to track the evolution of large gene families by their genomic structure. Following the large-scale association of exons encoding domains with well defined functions in invertebrates could be useful in predicting the function of complex multidomain proteins in mammals produced by accretion of domains. With this objective, we have determined the genomic structure of the 14 genes in invertebrates and vertebrates that contain rel domains. The sequence encoding the rel domain is defined by intronic boundaries and has been recombined with at least three structurally and functionally distinct genomic sequences to generate coding sequences for: (i) the rel/Dorsal/NFkappaB proteins that are retained in the cytoplasm by IkB-like proteins; (ii) the NFATc proteins that sense calcium signals and undergo cytoplasmic-to-nuclear translocation in response to dephosphorylation by calcineurin; and (iii) the TonEBP tonicity-responsive proteins. Remarkably, a single exon in each NFATc family member encodes the entire Ca(2+)/calcineurin sensing region, including nuclear import/export, calcineurin-binding, and substrate regions. The Rel/Dorsal proteins and the TonEBP proteins are present in Drosophila but not Caenorhabditis elegans. On the other hand, the calcium-responsive NFATc proteins are present only in vertebrates, suggesting that the NFATc family is dedicated to functions specific to vertebrates such as a recombinational immune response, cardiovascular development, and vertebrate-specific aspects of the development and function of the nervous system.  (+info)