(1/10689) SWM1, a developmentally regulated gene, is required for spore wall assembly in Saccharomyces cerevisiae.

Meiosis in Saccharomyces cerevisiae is followed by encapsulation of haploid nuclei within multilayered spore walls. Formation of this spore-specific wall requires the coordinated activity of enzymes involved in the biosynthesis of its components. Completion of late events in the sporulation program, leading to spore wall formation, requires the SWM1 gene. SWM1 is expressed at low levels during vegetative growth but its transcription is strongly induced under sporulating conditions, with kinetics similar to those of middle sporulation-specific genes. Homozygous swm1Delta diploids proceed normally through both meiotic divisions but fail to produce mature asci. Consistent with this finding, swm1Delta mutant asci display enhanced sensitivity to enzymatic digestion and heat shock. Deletion of SWM1 specifically affects the expression of mid-late and late sporulation-specific genes. All of the phenotypes observed are similar to those found for the deletion of SPS1 or SMK1, two putative components of a sporulation-specific MAP kinase cascade. However, epistasis analyses indicate that Swm1p does not form part of the Sps1p-Smk1p-MAP kinase pathway. We propose that Swm1p, a nuclear protein, would participate in a different signal transduction pathway that is also required for the coordination of the biochemical and morphological events occurring during the last phase of the sporulation program.  (+info)

(2/10689) NMD3 encodes an essential cytoplasmic protein required for stable 60S ribosomal subunits in Saccharomyces cerevisiae.

A mutation in NMD3 was found to be lethal in the absence of XRN1, which encodes the major cytoplasmic exoribonuclease responsible for mRNA turnover. Molecular genetic analysis of NMD3 revealed that it is an essential gene required for stable 60S ribosomal subunits. Cells bearing a temperature-sensitive allele of NMD3 had decreased levels of 60S subunits at the nonpermissive temperature which resulted in the formation of half-mer polysomes. Pulse-chase analysis of rRNA biogenesis indicated that 25S rRNA was made and processed with kinetics similar to wild-type kinetics. However, the mature RNA was rapidly degraded, with a half-life of 4 min. Nmd3p fractionated as a cytoplasmic protein and sedimented in the position of free 60S subunits in sucrose gradients. These results suggest that Nmd3p is a cytoplasmic factor required for a late cytoplasmic assembly step of the 60S subunit but is not a ribosomal protein. Putative orthologs of Nmd3p exist in Drosophila, in nematodes, and in archaebacteria but not in eubacteria. The Nmd3 protein sequence does not contain readily recognizable motifs of known function. However, these proteins all have an amino-terminal domain containing four repeats of Cx2C, reminiscent of zinc-binding proteins, implicated in nucleic acid binding or protein oligomerization.  (+info)

(3/10689) Characterization and expression of the cDNA encoding a new kind of phospholipid transfer protein, the phosphatidylglycerol/phosphatidylinositol transfer protein from Aspergillus oryzae: evidence of a putative membrane targeted phospholipid transfer protein in fungi.

The full-length cDNA of a phospholipid transfer protein (PLTP) was isolated from Aspergillus oryzae by a RACE-PCR procedure using degenerated primer pool selected from the N-terminal sequence of the purified phosphatidylinositol/phosphatidylglycerol transfer protein (PG/PI-TP). The cDNA encodes a 173 amino acid protein of 18823 Da. The deduced amino acid sequence from position 38 to 67 is 100% identical to the N-terminal sequence (first 30 amino acids) of the purified PG/PI-TP. This amino acid sequence is preceded by a leader peptide of 37 amino acids which is predicted to be composed of a signal peptide of 21 amino acids followed by an extra-sequence of 16 amino acids, or a membrane anchor protein signal (amino acid 5-29). This strongly suggests that the PG/PI-TP is a targeted protein. The deduced mature protein is 138 amino acids long with a predicted molecular mass of 14933 Da. Comparison of the deduced PG/PI-TP sequence with other polypeptide sequences available in databases revealed a homology with a protein deduced from an open reading frame coding for an unknown protein in Saccharomyces cerevisiae (36% identity and 57% similarity). Apart from this homology, the PG/PI-TP is unique and specific to the filamentous fungi on the basis of comparison of PLTP protein sequences. Northern blot analysis of RNA isolated from A. oryzae cultures grown on glucose or glucose supplemented with phospholipids suggests that the PG/PI-TP is transcribed by only one RNA species and allows us to show that expression of the protein is regulated at the messenger RNA level.  (+info)

(4/10689) Rpp14 and Rpp29, two protein subunits of human ribonuclease P.

In HeLa cells, the tRNA processing enzyme ribonuclease P (RNase P) consists of an RNA molecule associated with at least eight protein subunits, hPop1, Rpp14, Rpp20, Rpp25, Rpp29, Rpp30, Rpp38, and Rpp40. Five of these proteins (hPop1p, Rpp20, Rpp30, Rpp38, and Rpp40) have been partially characterized. Here we report on the cDNA cloning and immunobiochemical analysis of Rpp14 and Rpp29. Polyclonal rabbit antibodies raised against recombinant Rpp14 and Rpp29 recognize their corresponding antigens in HeLa cells and precipitate catalytically active RNase P. Rpp29 shows 23% identity with Pop4p, a subunit of yeast nuclear RNase P and the ribosomal RNA processing enzyme RNase MRP. Rpp14, by contrast, exhibits no significant homology to any known yeast gene. Thus, human RNase P differs in the details of its protein composition, and perhaps in the functions of some of these proteins, from the yeast enzyme.  (+info)

(5/10689) The Saccharomyces cerevisiae CWH8 gene is required for full levels of dolichol-linked oligosaccharides in the endoplasmic reticulum and for efficient N-glycosylation.

The Saccharomyces cerevisiae mutant cwh8 was previously found to have an anomalous cell wall. Here we show that the cwh8 mutant has an N -glycosylation defect. We found that cwh8 cells were resistant to vanadate and sensitive to hygromycin B, and produced glycoforms of invertase and carboxypeptidase Y with a reduced number of N -chains. We have cloned the CWH8 gene. We found that it was nonessential and encoded a putative transmembrane protein of 239 amino acids. Comparison of the in vitro oligosaccharyl transferase activities of membrane preparations from wild type or cwh8 Delta cells revealed no differences in enzyme kinetic properties indicating that the oligosaccharyl transferase complex of mutant cells was not affected. cwh8 Delta cells also produced normal dolichols and dolichol-linked oligosaccharide intermediates including the full-length form Glc3Man9GlcNAc2. The level of dolichol-linked oligosaccharides in cwh8 Delta cells was, however, reduced to about 20% of the wild type. We propose that inefficient N -glycosylation of secretory proteins in cwh8 Delta cells is caused by an insufficient supply of dolichol-linked oligosaccharide substrate.  (+info)

(6/10689) Identification of yeasts by RFLP analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers.

The identification and classification of yeasts have traditionally been based on morphological, physiological and biochemical traits. Various kits have been developed as rapid systems for yeast identification, but mostly for clinical diagnosis. In recent years, different molecular biology techniques have been developed for yeast identification, but there is no available database to identify a large number of species. In the present study, the restriction patterns generated from the region spanning the internal transcribed spacers (ITS1 and ITS2) and the 5.8S rRNA gene were used to identify a total of 132 yeast species belonging to 25 different genera, including teleomorphic and anamorphic ascomycetous and basidiomycetous yeasts. In many cases, the size of the PCR products and the restriction patterns obtained with endonucleases CfoI, HaeIII and HinfI yielded a unique profile for each species. Accordingly, the use of this molecular approach is proposed as a new rapid and easy method of routine yeast identification.  (+info)

(7/10689) The genes for the Golgi apparatus N-acetylglucosaminyltransferase and the UDP-N-acetylglucosamine transporter are contiguous in Kluyveromyces lactis.

The mannan chains of Kluyveromyces lactis mannoproteins are similar to those of Saccharomyces cerevisiae except that they lack mannose phosphate and have terminal alpha(1-->2)-linked N-acetylglucosamine. Previously, Smith et al. (Smith, W. L. Nakajima, T., and Ballou, C. E. (1975) J. Biol. Chem. 250, 3426-3435) characterized two mutants, mnn2-1 and mnn2-2, which lacked terminal N-acetylglucosamine in their mannoproteins. The former mutant lacks the Golgi N-acetylglucosaminyltransferase activity, whereas the latter one was recently found to be deficient in the Golgi UDP-GlcNAc transporter activity. Analysis of extensive crossings between the two mutants led Ballou and co-workers (reference cited above) to conclude that these genes were allelic or tightly linked. We have now cloned the gene encoding the K. lactis Golgi membrane N-acetylglucosaminyltransferase by complementation of the mnn2-1 mutation and named it GNT1. The mnn2-1 mutant was transformed with a 9.5-kilobase (kb) genomic fragment previously shown to contain the gene encoding the UDP-GlcNAc transporter; transformants were isolated, and phenotypic correction was monitored after cell surface labeling with fluorescein isothiocyanate-conjugated Griffonia simplicifolia II lectin, which binds terminal N-acetylglucosamine, and a fluorescence-activated cell sorter. The above 9.5-kb DNA fragment restored the wild-type lectin binding phenotype of the transferase mutant; further subcloning of this fragment yielded a smaller one containing an opening reading frame of 1,383 bases encoding a protein of 460 amino acids with an estimated molecular mass of 53 kDa, which also restored the wild-type phenotype. Transformants had also regained the ability to transfer N-acetylglucosamine to 3-0-alpha-D-mannopyranosyl-D-mannopyranoside. The gene encoding the above transferase was found to be approximately 1 kb upstream from the previously characterized MNN2 gene encoding the UDP-GlcNAc Golgi transporter. Each gene can be transcribed independently by their own promoter. To our knowledge this is the first demonstration of two Golgi apparatus functionally related genes being contiguous in a genome.  (+info)

(8/10689) The yeast dynamin-like protein, Mgm1p, functions on the mitochondrial outer membrane to mediate mitochondrial inheritance.

The mdm17 mutation causes temperature-dependent defects in mitochondrial inheritance, mitochondrial morphology, and the maintenance of mitochondrial DNA in the yeast Saccharomyces cerevisiae. Defects in mitochondrial transmission to daughter buds and changes in mitochondrial morphology were apparent within 30 min after shifting cells to 37 degrees C, while loss of the mitochondrial genome occurred after 4-24 h at the elevated temperature. The mdm17 lesion mapped to MGM1, a gene encoding a dynamin-like GTPase previously implicated in mitochondrial genome maintenance, and the cloned MGM1 gene complements all of the mdm17 mutant phenotypes. Cells with an mgm1-null mutation displayed aberrant mitochondrial inheritance and morphology. A version of mgm1 mutated in a conserved residue in the putative GTP-binding site was unable to complement any of the mutant defects. It also caused aberrant mitochondrial distribution and morphology when expressed at high levels in cells that also contained a wild-type copy of the gene. Mgm1p was localized to the mitochondrial outer membrane and fractionated as a component of a high molecular weight complex. These results indicate that Mgm1p is a mitochondrial inheritance and morphology component that functions on the mitochondrial surface.  (+info)