Heparin-binding EGF-like growth factor interacts with mouse blastocysts independently of ErbB1: a possible role for heparan sulfate proteoglycans and ErbB4 in blastocyst implantation. (1/308)

Blastocyst implantation requires molecular and cellular interactions between the uterine luminal epithelium and blastocyst trophectoderm. We have previously shown that heparin-binding EGF-like growth factor (HB-EGF) is induced in the mouse luminal epithelium solely at the site of blastocyst apposition at 16:00 hours on day 4 of pregnancy prior to the attachment reaction (22:00-23:00 hours), and that HB-EGF promotes blastocyst growth, zona-hatching and trophoblast outgrowth. To delineate which EGF receptors participate in blastocyst activation, the toxicity of chimeric toxins composed of HB-EGF or TGF-(&agr;) coupled to Pseudomonas exotoxin (PE) were used as measures of receptor expression. TGF-(&agr;) or HB-EGF binds to EGF-receptor (ErbB1), while HB-EGF, in addition, binds to ErbB4. The results indicate that ErbB1 is inefficient in mediating TGF-(&agr;)-PE or HB-EGF-PE toxicity as follows: (i) TGF-(&agr;)-PE was relatively inferior in killing blastocysts, 100-fold less than HB-EGF-PE, (ii) analysis of blastocysts isolated from cross-bred egfr+/- mice demonstrated that HB-EGF-PE, but not TGF-(&agr;)-PE, killed egfr-/- blastocysts, and (iii) blastocysts that survived TGF-(&agr;)-PE were nevertheless killed by HB-EGF-PE. HB-EGF-PE toxicity was partially mediated by cell surface heparan sulfate proteoglycans (HSPG), since a peptide corresponding to the heparin-binding domain of HB-EGF as well as heparitinase treatment protected the blastocysts from the toxic effects of HB-EGF-PE by about 40%. ErbB4 is a candidate for being an HB-EGF-responsive receptor since RT-PCR analysis demonstrated that day 4 mouse blastocysts express two different erbB4 isoforms and immunostaining with anti-ErbB4 antibodies confirmed that ErbB4 protein is expressed at the apical surface of the trophectoderm cells. It is concluded that (i) HB-EGF interacts with the blastocyst cell surface via high-affinity receptors other than ErbB1, (ii) the HB-EGF interaction with high-affinity blastocysts receptors is regulated by heparan sulfate, and (iii) ErbB4 is a candidate for being a high-affinity receptor for HB-EGF on the surface of implantation-competent blastocysts.  (+info)

Alterations of oncogenes, tumor suppressor genes and growth factors in hepatocellular carcinoma: with relation to tumor size and invasiveness. (2/308)

OBJECTIVE: To make a better understanding of the molecular mechanisms involved in recurrence and metastasis of the hepatocellular carcinoma (HCC), some invasion related oncogenes, and growth factors have been investigated. METHODS: The studies were separately carried out, the results of which were summarized in this article with relation to tumor size and invasiveness of HCC. RESULTS: The aberration rates of p53 and CDKN2 in HCC were 45.9% and 36.4% respectively, which were higher in invasive HCC compared with non-invasive HCC. H-ras expression was positive in 29.3% of HCC, which was associated with recurrence and extrahepatic metastasis of HCC. Intralesional injection of H-ras antisense gene markedly inhibited the tumor growth and metastasis of HCC in nude mice. The positive rates of transforming growth factor (TGF)-alpha, epidermal growth factor receptor (EGFR) and c-erbB-2 were 45.7%, 47.1% and 92.3% respectively. The expression of EGFR was closely related to TGF-alpha, which was related to HCC recurrence. But no obvious difference of TGF-alpha or c-erbB-2 expression was found between HCC with and without recurrence, or with and without extrahepatic metastasis. Expression of nm23/tissue inhibitor of metalloproteinase (TIMP)-2 was positively associated with the prognosis of HCC patients (Log-rank, P < 0.001). The alterative rates of above-mentioned genes and growth factors in small HCC were slightly lower than that in large ones, but no significant difference was shown except the p53 mutation. CONCLUSIONS: The p53/CDKN2 mutation, over-expression of H-ras/EGFR, were associated with the invasiveness and recurrence of HCC. H-ras antisense gene might be of potential implication in the control of HCC recurrence and metastasis. Expression of nm23/TIMP-2 was closely related to the prognosis of HCC patients. Biological characteristics remained critical points to the prognosis even in small HCC.  (+info)

Neuregulins signaling via a glial erbB-2-erbB-4 receptor complex contribute to the neuroendocrine control of mammalian sexual development. (3/308)

Activation of erbB-1 receptors by glial TGFalpha has been shown to be a component of the developmental program by which the neuroendocrine brain controls mammalian sexual development. The participation of other members of the erbB family may be required, however, for full signaling capacity. Here, we show that activation of astrocytic erbB-2/erbB-4 receptors plays a significant role in the process by which the hypothalamus controls the advent of mammalian sexual maturation. Hypothalamic astrocytes express both the erbB-2 and erbB-4 genes, but no erbB-3, and respond to neuregulins (NRGs) by releasing prostaglandin E(2) (PGE(2)), which acts on neurosecretory neurons to stimulate secretion of luteinizing hormone-releasing hormone (LHRH), the neuropeptide controlling sexual development. The actions of TGFalpha and NRGs in glia are synergistic and involve recruitment of erbB-2 as a coreceptor, via erbB-1 and erbB-4, respectively. Hypothalamic expression of both erbB-2 and erbB-4 increases first in a gonad-independent manner before the onset of puberty, and then, at the time of puberty, in a sex steroid-dependent manner. Disruption of erbB-2 synthesis in hypothalamic astrocytes by treatment with an antisense oligodeoxynucleotide inhibited the astrocytic response to NRGs and, to a lesser extent, that to TGFalpha and blocked the erbB-dependent, glia-mediated, stimulation of LHRH release. Intracerebral administration of the oligodeoxynucleotide to developing animals delayed the initiation of puberty. Thus, activation of the erbB-2-erbB-4 receptor complex appears to be a critical component of the signaling process by which astrocytes facilitate the acquisition of female reproductive capacity in mammals.  (+info)

The SMRT corepressor is regulated by a MEK-1 kinase pathway: inhibition of corepressor function is associated with SMRT phosphorylation and nuclear export. (4/308)

The SMRT (silencing mediator of retinoic acid and thyroid hormone receptor) corepressor participates in the repression of target gene expression by a variety of transcription factors, including the nuclear hormone receptors, promyelocytic leukemia zinc finger protein, and B-cell leukemia protein 6. The ability of SMRT to associate with these transcription factors and thereby to mediate repression is strongly inhibited by activation of tyrosine kinase signaling pathways, such as that represented by the epidermal growth factor receptor. We report here that SMRT function is potently inhibited by a mitogen-activated protein kinase (MAPK) kinase kinase (MAPKKK) cascade that operates downstream of this growth factor receptor. Intriguingly, the SMRT protein is a substrate for phosphorylation by protein kinases operating at multiple levels in this MAPKKK pathway, including the MAPKs, MAPK-extracellular signal-regulated kinase 1 (MEK-1), and MEK-1 kinase (MEKK-1). Phosphorylation of SMRT by MEKK-1 and, to a lesser extent, MEK-1 inhibits the ability of SMRT to physically tether to its transcription factor partners. Notably, activation of MEKK-1 or MEK-1 signaling in transfected cells also leads to a redistribution of the SMRT protein from a nuclear compartment to a more perinuclear or cytoplasmic compartment. We suggest that SMRT-mediated repression is regulated by the MAPKKK cascade and that changes both in the affinity of SMRT for its transcription factors and in the subcellular distribution of SMRT contribute to the loss of SMRT function that is observed in response to kinase signal transduction.  (+info)

Ploidy, expression of erbB1, erbB2, P53 and amplification of erbB1, erbB2 and erbB3 in non-small cell lung cancer. (5/308)

The aim of this study was to assess the prognostic value of deoxyribonucleic acid analysis, expression oferbB1, erbB2 and P53, and amplification levels of erbB1, erbB2 and erbB3 in non-small cell lung cancer (NSCLC). Consecutive patients with NSCLC who underwent treatment with curative intention (118) were included. In 108 cases, the cell cycle was analysed using flow cytometry and double-staining with propidium iodide and anticytokeratin. In another 108 cases, expression of erbB1, erbB2 and P53 was assessed immunhistochemically. Amplification of the erbB family was determined in the tumours of 53 patients using double-differential polymerase chain reaction. Of the tumours, 81% were aneuploid and 14% showed positive staining for erbB1, 18% for erbB2 and 41% for P53. There were normal mean gene copy numbers in 86% for erbB1, 94% for erbB2 and in 96% for erbB3. No significant correlations were noted between erbB1, erbB2 and P53 expression, ploidy status and tumour stage. In a Cox regression model, only tumour stage was shown to be prognostically significant. It seems that ploidy and expression status of erbB1, erbB2 and P53 are not prognostic parameters in non-small cell lung cancer. Amplification of the erbB family does not seem to be a frequent event in non-small cell lung cancer.  (+info)

MR imaging in rat glioma model and gene therapy using EGFR antisence RNA. (6/308)

OBJECTIVE: To study the value of 1.5T MRI in long-term follow-up of rat C6 glioma model and the efficacy of EGFR antisence RNA therapy in vivo. METHODS: Forty-three male Wistar rats, weighing 150 to 200 g, were used for this study. They were divided into four groups: group I (7 normal rats); group II (16 rats inoculated C6 cells in the right caudate nucleus); group III (12 rats with the C6 gliomas treated with EGFR antisence RNA by in site injection); and group IV (8 rats inoculated C6 cells transfected with EGFR antisence RNA in the right caudate nucleus). Group I was examined by plain and enhanced MR scanning. Group II-IV were followed up by plain and enhanced MR scanning and were sacrificed in variable time points for pathological examination. RESULTS: Cerebral hemispheres of normal rat were shown clearly on the MR image. The tumor could be seen about 1 week after inoculation. According to the findings on the follow-up MR scan, we could observe growth of the tumor or its regression after treatment. The tumor growth was significantly inhibited in group III and group IV as compared to those in group II. CONCLUSION: The growth of the rat C6 glioma model and its change after treatment could be shown clearly in 1.5T MR imaging; EGFR antisence RNA significantly inhibited the growth of glioma in vivo.  (+info)

Cyclooxygenase-2 is overexpressed in human cervical cancer. (7/308)

Multiple lines of evidence suggest that cyclooxygenase-2 (COX-2) is an important target for preventing epithelial malignancies. Little is known, however, about the expression of COX-2 in gynecological malignancies. By immunoblot analysis, COX-2 was detected in 12 of 13 cases of cervical cancer but was undetectable in normal cervical tissue. Immunohistochemistry revealed COX-2 in malignant epithelial cells. COX-2 was also expressed in cervical intraepithelial neoplasia. The mechanism by which COX-2 is up-regulated in cervical cancer is unknown. Because the epidermal growth factor (EGF) receptor is commonly overexpressed in cervical cancer, we investigated whether EGF could induce COX-2 in cultured human cervical carcinoma cells. Treatment with EGF markedly induced COX-2 protein, COX-2 mRNA, and stimulated COX-2 promoter activity. The induction of COX-2 by EGF was suppressed by inhibitors of tyrosine kinase activity, phosphatidylinositol 3-kinase, mitogen-activated protein kinase kinase, and p38 mitogen-activated protein kinase. Moreover, overexpressing dominant-negative forms of extracellular signal-regulated kinase 1, c-Jun NH2-terminal kinase, p38, and c-Jun blocked EGF-mediated induction of COX-2 promoter activity. Taken together, these findings suggest that deregulation of the EGF receptor signaling pathway may lead to enhanced COX-2 expression in cervical cancer.  (+info)

Development of zinc finger domains for recognition of the 5'-ANN-3' family of DNA sequences and their use in the construction of artificial transcription factors. (8/308)

In previous studies we have developed Cys(2)-His(2) zinc finger domains that specifically recognized each of the 16 5'-GNN-3' DNA target sequences and could be used to assemble six-finger proteins that bind 18-base pair DNA sequences (Beerli, R. R., Dreier, B., and Barbas, C. F., III (2000) Proc. Natl. Acad. Sci. U. S. A. 97, 1495--1500). Such proteins provide the basis for the construction of artificial transcription factors to study gene/function relationships in the post-genomic era. Central to the universal application of this approach is the development of zinc finger domains that specifically recognize each of the 64 possible DNA triplets. Here we describe the construction of a novel phage display library that enables the selection of zinc finger domains recognizing the 5'-ANN-3' family of DNA sequences. Library selections provided domains that in most cases showed binding specificity for the 3-base pair target site that they were selected to bind. These zinc finger domains were used to construct 6-finger proteins that specifically bound their 18-base pair target site with affinities in the pm to low nm range. When fused to regulatory domains, these proteins containing various numbers of 5'-ANN-3' domains were capable of specific transcriptional regulation of a reporter gene and the endogenous human ERBB-2 and ERBB-3 genes. These results suggest that modular DNA recognition by zinc finger domains is not limited to the 5'-GNN-3' family of DNA sequences and can be extended to the 5'-ANN-3' family. The domains characterized in this work provide for the rapid construction of artificial transcription factors, thereby greatly increasing the number of sequences and genes that can be targeted by DNA-binding proteins built from pre-defined zinc finger domains.  (+info)