Localization of upstream elements involved in transcriptional regulation of the rat testis-specific histone H1t gene in somatic cells. (9/10081)

The testis-specific histone H1t is synthesized exclusively in late pachytene primary spermatocytes during spermatogenesis. The mechanisms involved in transcriptional repression of the H1t gene during development before the spermatocyte stage and in later stages of germinal cell maturation and in nonexpressing somatic tissues are unknown. To assess the contribution of the upstream DNA sequence to H1t transcriptional silencing in nonexpressing cells, a set of histone H1t-promoted reporter vectors was constructed. Transient transfection of mouse C127I cells with these reporter vectors allowed us to identify a transcriptional silencer located between 948 base pairs (bp) and 780 bp upstream from the H1t transcriptional initiation site. Histone H1t-promoted luciferase activity increased 4-fold when the region between 948 bp and 875 bp upstream from the transcriptional initiation site was eliminated. Addition of a 73-bp rat H1t promoter fragment (-948 to -875, containing the 5' portion of the silencer region) to a site immediately upstream from the histone H1d proximal promoter led to significantly reduced luciferase expression upon transient transfection (56% in C127I cells and 44% in HeLa cells). Nuclear proteins were found to bind to DNA within the H1t silencer region when assayed by in vitro deoxyribonuclease (DNase) I footprinting. Thus, our data suggest that an active transcriptional silencer mechanism involving a specific and autonomous H1t promoter element (nucleotides -948/-875) may be operative to minimize expression of the H1t gene in nontesticular cells.  (+info)

Dpp and Notch specify the fusion cell fate in the dorsal branches of the Drosophila trachea. (10/10081)

Decapentaplegic (Dpp) signaling determines the number of cells that migrate dorsally to form the dorsal primary branch during tracheal development. We report that Dpp signaling is also required for the differentiation of one of three different cell types in the dorsal branches, the fusion cell. In Mad mutant embryos or in embryos expressing dominant negative constructs of the two type I Dpp receptors in the trachea the number of cells expressing fusion cell-specific marker genes is reduced and fusion of the dorsal branches is defective. Ectopic expression of Dpp or the activated form of the Dpp receptor Tkv in all tracheal cells induces ectopic fusions of the tracheal lumen and ectopic expression of fusion gene markers in all tracheal branches. Among the fusion marker genes that are activated in the trachea in response to ectopic Dpp signaling is Delta. In conditional Notch loss of function mutants additional tracheal cells adopt the fusion cell fate and ectopic expression of an activated form of the Notch receptor in fusion cells results in suppression of fusion cell markers and disruption of the branch fusion. The number of cells that express the fusion cell markers in response to ectopic Dpp signaling is increased in Notch(ts1) mutants, suggesting that the two signaling pathways have opposing effects in the selection of the fusion cells in the dorsal branches.  (+info)

Cloning and characterization of the human protein kinase C-eta promoter. (11/10081)

Protein kinase C-eta (PKC-eta) is predominantly expressed in epithelial tissue, including lung, intestine, and skin. In skin, PKC-eta expression is limited to keratinocytes in the upper layers of the epidermis. To investigate regulation of cell type-specific expression of PKC-eta, we cloned the 5'-segment of the PKC-eta gene from a P1 genomic library. A 9.4-kilobase pair fragment encompassing the 5'-flanking region, first exon, and first intron, was localized on human chromosome 14 (14q22-23). Two major transcription initiation sites identified by reverse transcriptase polymerase chain reaction, primer extension, and S1 nuclease mapping, were located approximately 650 base pairs upstream from the translation start site. The human PKC-eta proximal promoter region lacks canonical TATA and CAAT boxes and GC-rich regions. A 1.6-kilobase pair 5'-flanking region displayed maximal promoter activity. This promoter was active in human keratinocytes but not human skin fibroblasts, in accord with endogenous PKC-eta gene expression. Stepwise 5' deletion analysis revealed the presence of adjacent regulatory regions containing silencer and enhancer elements located 1821-1702 base pairs and 1259-1189 base pairs upstream of the transcription initiation site. Deletion of the proximal PKC-eta promoter rendered the enhancer element inactive. Both the silencer and enhancer elements regulated heterologous promoters in keratinocytes but not fibroblasts. Electrophoretic mobility shift analysis demonstrated specific protein binding to Ets/heat shock factor and Ets/activator protein-1 consensus sequences in the enhancer and silencer regions, respectively. Mutations of the Ets/heat shock factor binding sites caused loss of functional enhancer activity. These data elucidate transcriptional regulation and tissue-specific expression of the PKC-eta gene.  (+info)

Hypermethylation of metallothionein-I promoter and suppression of its induction in cell lines overexpressing the large subunit of Ku protein. (12/10081)

We have shown previously that the heavy metal-induced metallothionein-I (MT-I) gene expression is specifically repressed in a rat fibroblast cell line (Ku-80) overexpressing the 80-kDa subunit of Ku autoantigen but not in cell lines overexpressing the 70-kDa subunit or Ku heterodimer. Here, we explored the molecular mechanism of silencing of MT-I gene in Ku-80 cells. Genomic footprinting analysis revealed both basal and heavy metal-inducible binding at specific cis elements in the parental cell line (Rat-1). By contrast, MT-I promoter in Ku-80 cells was refractory to any transactivating factors, implying alteration of chromatin structure. Treatment of two clonal lines of Ku-80 cells with 5-azacytidine, a potent DNA demethylating agent, rendered MT-I gene inducible by heavy metals, suggesting that the gene is methylated in these cells. Bisulfite genomic sequencing revealed that all 21 CpG dinucleotides in MT-I immediate promoter were methylated in Ku-80 cells, whereas only four CpG dinucleotides were methylated in Rat-1 cells. Almost all methylated CpG dinucleotides were demethylated in Ku-80 cells after 5-azacytidine treatment. To our knowledge, this is the first report that describes hypermethylation of a specific gene promoter and its resultant silencing in response to overexpression of a cellular protein.  (+info)

Methylation sequencing analysis refines the region of H19 epimutation in Wilms tumor. (13/10081)

Differential DNA methylation of the parental alleles has been implicated in the establishment and maintenance of the monoallelic expression of imprinted genes. H19 and IGF2 are oppositely imprinted with only the maternal and the paternal alleles expressed, respectively. In Wilms tumor, a childhood renal neoplasm, loss of the H19/IGF2 imprinted expression pattern results in silencing of H19 and biallelic expression of IGF2. This was shown to be associated with biallelic methylation of the H19 promoter in the tumor and the adjacent kidney tissue suggesting that epigenetic H19 silencing is an early event in Wilms tumorigenesis. An imprinting mark region characterized by paternal allele-specific methylation has been suggested to reside in a GC-rich region of 400-base pair direct repeats starting at -2 kilobase pairs (kb) relative to the H19 transcription start and extending upstream. The upstream boundary of the potential paternal methylation imprint of the H19 gene has yet to be defined. We sought to define this upstream imprint boundary and investigate whether Wilms tumors with loss of imprinting are biallelically methylated in this imprinting mark region. The analysis of 6.6 kb of new upstream H19 sequence determined in this study identified a series of the direct 400-base pair repeats that extends to approximately -5.3 kb relative to the transcription start. DNA methylation analyses indicated that the upstream boundary of the potential imprint may coincide with the 5' end of the direct repeats. We found that Wilms tumors with loss of imprinting are biallelically methylated in the H19 upstream repeat region, and we suggest that pathological methylation in this region is the epigenetic error that initiates H19 silencing.  (+info)

Three conserved transcriptional repressor domains are a defining feature of the TIEG subfamily of Sp1-like zinc finger proteins. (14/10081)

Sp1-like transcription factors are characterized by three highly homologous C-terminal zinc finger motifs that bind GC-rich sequences. These proteins behave as either activators or repressors and have begun to be classified into different subfamilies based upon the presence of conserved motifs outside the zinc finger domain. This classification predicts that different Sp1-like subfamilies share certain functional properties. TIEG1 and TIEG2 constitute a new subfamily of transforming growth factor-beta-inducible Sp1-like proteins whose zinc finger motifs also bind GC-rich sequences. However, regions outside of the DNA-binding domain that differ in structure from other Sp1-like family members remain poorly characterized. Here, we have used extensive mutagenesis and GAL4-based transcriptional assays to identify three repression domains within TIEG1 and TIEG2 that we call R1, R2, and R3. R1 is 10 amino acids, R2 is 12 amino acids, and R3 is approximately 80 amino acids long. None of these domains share homology with previously described transcriptional regulatory motifs, but they share strong sequence homology and are functionally conserved between TIEG1 and TIEG2. Together, these data demonstrate that TIEG proteins are capable of repressing transcription, define domains critical for this function, and further support the idea that different subfamilies of Sp1-like proteins have evolved to mediate distinct transcriptional functions.  (+info)

Cytoplasmic dynein is required for distinct aspects of MTOC positioning, including centrosome separation, in the one cell stage Caenorhabditis elegans embryo. (15/10081)

We have investigated the role of cytoplasmic dynein in microtubule organizing center (MTOC) positioning using RNA-mediated interference (RNAi) in Caenorhabditis elegans to deplete the product of the dynein heavy chain gene dhc-1. Analysis with time-lapse differential interference contrast microscopy and indirect immunofluorescence revealed that pronuclear migration and centrosome separation failed in one cell stage dhc-1 (RNAi) embryos. These phenotypes were also observed when the dynactin components p50/dynamitin or p150(Glued) were depleted with RNAi. Moreover, in 15% of dhc-1 (RNAi) embryos, centrosomes failed to remain in proximity of the male pronucleus. When dynein heavy chain function was diminished only partially with RNAi, centrosome separation took place, but orientation of the mitotic spindle was defective. Therefore, cytoplasmic dynein is required for multiple aspects of MTOC positioning in the one cell stage C. elegans embryo. In conjunction with our observation of cytoplasmic dynein distribution at the periphery of nuclei, these results lead us to propose a mechanism in which cytoplasmic dynein anchored on the nucleus drives centrosome separation.  (+info)

Modulation of life-span by histone deacetylase genes in Saccharomyces cerevisiae. (16/10081)

The yeast Saccharomyces cerevisiae has a limited life-span, which is measured by the number of divisions that individual cells complete. Among the many changes that occur as yeasts age are alterations in chromatin-dependent transcriptional silencing. We have genetically manipulated histone deacetylases to modify chromatin, and we have examined the effect on yeast longevity. Deletion of the histone deacetylase gene RPD3 extended life-span. Its effects on chromatin functional state were evidenced by enhanced silencing at the three known heterochromatic regions of the genome, the silent mating type (HM), subtelomeric, and rDNA loci, which occurred even in the absence of SIR3. Similarly, the effect of the rpd3Delta on life-span did not depend on an intact Sir silencing complex. In fact, deletion of SIR3 itself had little effect on life-span, although it markedly accelerated the increase in cell generation time that is observed during yeast aging. Deletion of HDA1, another histone deacetylase gene, did not result in life-span extension, unless it was combined with deletion of SIR3. The hda1Delta sir3Delta resulted in an increase in silencing, but only at the rDNA locus. Deletion of RPD3 suppressed the loss of silencing in rDNA in a sir2 mutant; however, the silencing did not reach the level found in the rpd3Delta single mutant, and RPD3 deletion did not overcome the life-span shortening seen in the sir2 mutant. Deletion of both RPD3 and HDA1 caused a decrease in life-span, which resulted from a substantial increase in initial mortality of the population. The expression of both of these genes declines with age, providing one possible explanation for the increase in mortality during the life-span. Our results are consistent with the loss of rDNA silencing leading to aging in yeast. The functions of RPD3 and HDA1 do not overlap entirely. RPD3 exerts its effect on chromatin at additional sites in the genome, raising the possibility that events at loci other than rDNA play a role in the aging process.  (+info)