HIV-1 Gag shares a signature motif with annexin (Anx7), which is required for virus replication. (9/2457)

Genetic and biochemical analyses of the Gag protein of HIV-1 indicate a crucial role for this protein in several functions related to viral replication, including viral assembly. It has been suggested that Gag may fulfill some of the functions by recruiting host cellular protein(s). In our effort to identify structural and functional homologies between Gag and cellular cytoskeletal and secretory proteins involved in transport, we observed that HIV-1 Gag contains a unique PGQM motif in the capsid region. This motif was initially noted in the regulatory domain of synexin the membrane fusion protein of Xenopus laevis. To evaluate the functional significance of the highly conserved PGQM motif, we introduced alanine (A) in place of individual residues of the PGQM and deleted the motif altogether in a Gag expression plasmid and in an HIV-1 proviral DNA. The proviral DNA containing mutations in the PGQM motif showed altered expression, assembly, and release of viral particles in comparison to parental (NL4-3) DNA. When tested in multiple- and single-round replication assays, the mutant viruses exhibited distinct replication phenotypes; the viruses containing the A for the G and Q residues failed to replicate, whereas A in place of the P and M residues did not inhibit viral replication. Deletion of the tetrapeptide also resulted in the inhibition of replication. These results suggest that the PGQM motif may play an important role in the infection process of HIV-1 by facilitating protein-protein interactions between viral and/or viral and cellular proteins.  (+info)

Dual and recombinant infections: an integral part of the HIV-1 epidemic in Brazil. (10/2457)

We systematically evaluated multiple and recombinant infections in an HIV-infected population selected for vaccine trials. Seventy-nine HIV-1 infected persons in a clinical cohort study in Rio de Janeiro, Brazil, were evaluated for 1 year. A combination of molecular screening assays and DNA sequencing showed 3 dual infections (3.8%), 6 recombinant infections (7.6%), and 70 (88.6%) infections involving single viral subtypes. In the three dual infections, we identified HIV-1 subtypes F and B, F and D, and B and D; in contrast, the single and recombinant infections involved only HIV-1 subtypes B and F. The recombinants had five distinct B/F mosaic patterns: Bgag-p17/Bgag-p24/Fpol/Benv, Fgag-p17/Bgag-p24/Fpol/Fenv, Bgag-p17/B-Fgag-p24/Fpol/Fenv, Bgag-p17/B-Fgag-p24/Fpol/Benv, and Fgag-p17/B-Fgag-p24/Fpol/Fenv. No association was found between dual or recombinant infections and demographic or clinical variables. These findings indicate that dual and recombinant infections are emerging as an integral part of the HIV/AIDS epidemic in Brazil and emphasize the heterogenous character of epidemics emerging in countries where multiple viral subtypes coexist.  (+info)

Incorporation of Vpr into human immunodeficiency virus type 1 requires a direct interaction with the p6 domain of the p55 gag precursor. (11/2457)

The 96-amino acid Vpr protein is the major virion-associated accessory protein of the human immunodeficiency virus type 1 (HIV-1). As Vpr is not part of the p55 Gag polyprotein precursor (Pr55(gag)), its incorporation requires an anchor to associate with the assembling viral particles. Although the molecular mechanism is presently unclear, the C-terminal region of the Pr55(gag) corresponding to the p6 domain appears to constitute such an anchor essential for the incorporation of the Vpr protein. In order to clarify the mechanism by which the Vpr accessory protein is trans-incorporated into progeny virion particles, we tested whether HIV-1 Vpr interacted with the Pr55(gag) using the yeast two-hybrid system and the maltose-binding protein pull-down assay. The present study provides genetic and biochemical evidence indicating that the Pr55(gag) can physically interact with the Vpr protein. Furthermore, point mutations affecting the integrity of the conserved L-X-S-L-F-G motif of p6(gag) completely abolish the interaction between Vpr and the Pr55(gag) and, as a consequence, prevent Vpr virion incorporation. In contrast to other studies, mutations affecting the integrity of the NCp7 zinc fingers impaired neither Vpr virion incorporation nor the binding between Vpr and the Pr55(gag). Conversely, amino acid substitutions in Vpr demonstrate that an intact N-terminal alpha-helical structure is essential for the Vpr-Pr55(gag) interaction. Vpr and the Pr55(gag) demonstrate a strong interaction in vitro as salt concentrations as high as 900 mM could not disrupt the interaction. Finally, the interaction is efficiently competed using anti-Vpr sera. Together, these results strongly suggest that Vpr trans-incorporation into HIV-1 particles requires a direct interaction between its N-terminal region and the C-terminal region of p6(gag). The development of Pr55(gag)-Vpr interaction assays may allow the screening of molecules that can prevent the incorporation of the Vpr accessory protein into HIV-1 virions, and thus inhibit its early functions.  (+info)

Vaccination with experimental feline immunodeficiency virus vaccines, based on autologous infected cells, elicits enhancement of homologous challenge infection. (12/2457)

Cats were vaccinated with fixed autologous feline immunodeficiency virus (FIV)-infected cells in order to present viral proteins to the immune system of individual cats in an MHC-matched fashion. Upon vaccination, a humoral response against Gag was induced. Furthermore, virus-neutralizing antibodies were detected in a Crandell feline kidney cell-based neutralization assay, but not in a neutralization assay based on primary peripheral blood mononuclear cells. Despite the induction of these FIV-specific responses, vaccinated cats were not protected. Instead, accelerated virus replication was found, an observation similar to what previous experiments using other vaccine candidates have shown. Here, the results of the present study are discussed in the light of enhancement of lentivirus infections as a complicating factor in lentivirus vaccine development.  (+info)

Mucosal Th1- versus Th2-type responses for antibody- or cell-mediated immunity to simian immunodeficiency virus in rhesus macaques. (13/2457)

Simian immunodeficiency virus (SIV)-specific B cell responses and the Th1- or Th2-type profiles of cytokine expression were determined for rhesus macaques immunized with SIV antigens via the iliac lymph nodes (by use of a targeted lymph node [TLN] procedure) or orally with SIV p55gag plus cholera toxin (CT) as a mucosal adjuvant. Analysis of CD4+ T cells purified from SIV-stimulated peripheral blood mononuclear cells of immunized macaques revealed that Th2 cytokine production gradually increased after the second and third TLN immunization. Analysis of SIV-specific B cell responses revealed that peak SIV-specific IgA B cell responses followed the third TLN immunization and occurred during peak Th2-type T cell responses. Oral immunization of macaques with p55gag plus CT induced interferon-gamma-secreting Th1-type and select Th2-type cytokine-producing CD4+ T helper cells, which most likely accounted for the induction of p55-specific systemic IgG and mucosal IgA responses.  (+info)

Evidence of interactions between the nucleocapsid protein NCp7 and the reverse transcriptase of HIV-1. (14/2457)

The human immunodeficiency virus (HIV-1) nucleocapsid protein NCp7 containing two CX2CX4HX4C-type zinc fingers was proposed to be involved in reverse transcriptase (RT)-catalyzed proviral DNA synthesis through promotion of tRNA3Lys annealing to the RNA primer binding site, improvement of DNA strand transfers, and enhancement of RT processivity. The NCp7 structural characteristics are crucial because mutations altering the finger domain conformation led to noninfectious viruses characterized by defects in provirus integration. These findings prompted us to study a putative RT/NCp7 protein-protein interaction. Binding assays using far Western analysis or RT immobilized on beads clearly showed the formation of a complex between NCp7 and RT. The affinity of NCp7 for p66/p51RT was 0.60 microM with a 1:1 stoechiometry. This interaction was confirmed by chemical cross-linking and co-immunoprecipitation of the two proteins in a viral environment. Competition experiments using different NCp7 mutants showed that alteration of the finger structure disrupted RT recognition, giving insights into the loss of infectivity of corresponding HIV-1 mutants. Together with structural data on RT, these results suggest that the role of NCp7 could be to enhance RT processivity through stabilization of a p51-induced active form of the p66 subunit and open the way for designing new antiviral agents.  (+info)

Evolution and biological characterization of human immunodeficiency virus type 1 subtype E gp120 V3 sequences following horizontal and vertical virus transmission in a single family. (15/2457)

It has been suggested that immune-pressure-mediated positive selection operates to maintain the antigenic polymorphism on the third variable (V3) loop of the gp120 of human immunodeficiency virus type 1 (HIV-1). Here we present evidence, on the basis of sequencing 147 independently cloned env C2/V3 segments from a single family (father, mother, and their child), that the intensity of positive selection is related to the V3 lineage. Phylogenetic analysis and amino acid comparison of env C2/V3 and gag p17/24 regions indicated that a single HIV-1 subtype E source had infected the family. The analyses of unique env C2/V3 clones revealed that two V3 lineage groups had evolved in the parents. Group 1 was maintained with low variation in all three family members regardless of the clinical state or the length of infection, whereas group 2 was only present in symptomatic individuals and was more positively charged and diverse than group 1. Only virus isolates carrying the group 2 V3 sequences infected and induced syncytia in MT2 cells, a transformed CD4(+)-T-cell line. A statistically significant excess of nonsynonymous substitutions versus synonymous substitutions was demonstrated only for the group 2 V3 region. The data suggest that HIV-1 variants, possessing the more homogeneous group 1 V3 element and exhibiting the non-syncytium-inducing phenotype, persist in infected individuals independent of clinical status and appear to be more resistant to positive selection pressure.  (+info)

Complete sequence of enzootic nasal tumor virus, a retrovirus associated with transmissible intranasal tumors of sheep. (16/2457)

The sequence of the complete genome of ovine enzootic nasal tumor virus, an exogenous retrovirus associated exclusively with contagious intranasal tumors of sheep, was determined. The genome is 7,434 nucleotides long and exhibits a genetic organization characteristic of type B and D oncoviruses. Enzootic nasal tumor virus is closely related to the Jaagsiekte sheep retrovirus and to sheep endogenous retroviruses.  (+info)