Hierarchal utilization of different T-cell receptor Vbeta gene segments in the CD8(+)-T-cell response to an immunodominant Moloney leukemia virus-encoded epitope in vivo. (73/2457)

The CD8(+)-T-cell response to Moloney murine leukemia virus (M-MuLV)-associated antigens in C57BL/6 mice is directed against an immunodominant gag-encoded epitope (CCLCLTVFL) presented in the context of H-2D(b) and is restricted primarily to cytotoxic T lymphocytes (CTL) expressing the Valpha3.2 and Vbeta5.2 gene segments. We decided to examine the M-MuLV response in congenic C57BL/6 Vbeta(a) mice which are unable to express the dominant Valpha3.2(+) Vbeta5.2(+) T-cell receptor (TCR) due to a large deletion at the TCR locus that includes the Vbeta5.2 gene segment. Interestingly, M-MuLV-immune C57BL/6 Vbeta(a) mice were still able to reject M-MuLV-infected tumor cells and direct ex vivo analysis of peripheral blood lymphocytes from these immune mice revealed a dramatic increase in CD8(+) cells utilizing the same Valpha3.2 gene segment in association with two different Vbeta segments (Vbeta3 and Vbeta17). Surprisingly, all these CTL recognized the same immunodominant M-MuLV gag epitope. Analysis of the TCR repertoire of individual M-MuLV-immune (C57BL/6 x C57BL/6 Vbeta(a))F(1) mice revealed a clear hierarchy in Vbeta utilization, with a preferential usage of the Vbeta17 gene segment, whereas Vbeta3 and especially Vbeta5.2 were used to much lesser extents. Sequencing of TCRalpha- and -beta-chain junctional regions of CTL clones specific for the M-MuLV gag epitope revealed a diverse repertoire of TCRbeta chains in Vbeta(a) mice and a highly restricted TCRbeta-chain repertoire in Vbeta(b) mice, whereas TCRalpha-chain sequences were highly conserved in both cases. Collectively, our data indicate that the H-2D(b)-restricted M-MuLV gag epitope can be recognized in a hierarchal fashion by different Vbeta domains and that the degree of beta-chain diversity varies according to Vbeta utilization.  (+info)

The nucleocapsid domain is responsible for the ability of spleen necrosis virus (SNV) Gag polyprotein to package both SNV and murine leukemia virus RNA. (74/2457)

Murine leukemia virus (MLV)-based vector RNA can be packaged and propagated by the proteins of spleen necrosis virus (SNV). We recently demonstrated that MLV proteins cannot support the replication of an SNV-based vector; RNA analysis revealed that MLV proteins cannot efficiently package SNV-based vector RNA. The domain in Gag responsible for the specificity of RNA packaging was identified using chimeric gag-pol expression constructs. A competitive packaging system was established by generating a cell line that expresses one viral vector RNA containing the MLV packaging signal (Psi) and another viral vector RNA containing the SNV packaging signal (E). The chimeric gag-pol expression constructs were introduced into the cells, and vector titers as well as the efficiency of RNA packaging were examined. Our data confirm that Gag is solely responsible for the selection of viral RNAs. Furthermore, the nucleocapsid (NC) domain in the SNV Gag is responsible for its ability to interact with both SNV E and MLV Psi. Replacement of the SNV NC with the MLV NC generated a chimeric Gag that could not package SNV RNA but retained its ability to package MLV RNA. A construct expressing SNV gag-MLV pol supported the replication of both MLV and SNV vectors, indicating that the gag and pol gene products from two different viruses can functionally cooperate to perform one cycle of retroviral replication. Viral titer data indicated that SNV cis-acting elements are not ideal substrates for MLV pol gene products since infectious viruses were generated at a lower efficiency. These results indicate that the nonreciprocal recognition between SNV and MLV extends beyond the Gag-RNA interaction and also includes interactions between Pol and other cis-acting elements.  (+info)

Mucosal immunization of cynomolgus macaques with two serotypes of live poliovirus vectors expressing simian immunodeficiency virus antigens: stimulation of humoral, mucosal, and cellular immunity. (75/2457)

Poliovirus live virus vectors are a candidate recombinant vaccine system. Previous studies using this system showed that a live poliovirus vector expressing a foreign antigen between the structural and nonstructural proteins generates both antibody and cytotoxic T-lymphocyte responses in mice. Here we describe a novel in vitro method of cloning recombinant polioviruses involving a hybrid-PCR approach. We report the construction of recombinant vectors of two different serotypes of poliovirus-expressing simian immunodeficiency virus (SIV) antigens and the intranasal and intravenous inoculations of four adult cynomolgus macaques with these poliovirus vectors expressing the SIV proteins p17(gag) and gp41(env). All macaques generated a mucosal anti-SIV immunoglobulin A (IgA) response in rectal secretions. Two of the four macaques generated mucosal antibody responses detectable in vaginal lavages. Strong serum IgG responses lasting for at least 1 year were detected in two of the four monkeys. SIV-specific T-cell lymphoproliferative responses were detected in three of the four monkeys. SIV-specific cytotoxic T lymphocytes were detected in two of the four monkeys. This is the first report of poliovirus-elicited vaginal IgA or cytotoxic T lymphocytes in any naturally infectable primate, including humans. These findings support the concept that a live poliovirus vector is a potentially useful delivery system that elicits humoral, mucosal, and cellular immune responses against exogenous antigens.  (+info)

cORF and RcRE, the Rev/Rex and RRE/RxRE homologues of the human endogenous retrovirus family HTDV/HERV-K. (76/2457)

cORF, a protein encoded by the human endogenous retrovirus family HTDV/HERV-K, contains amino acid motifs which resemble the nuclear import and export signals of the viral regulatory proteins Rev (human immunodeficiency virus) and Rex (human T-cell leukemia virus [HTLV]). In this study, we demonstrated that cORF indeed has a Rev-like function and mapped the cORF-responsive RNA element to a sequence in the 3' long terminal repeat, a localization similar to RxRE, the responsive element in HTLV type 1. Accordingly, we have given the element the designation RcRE. cORF and RcRE stabilize unspliced and incompletely spliced viral transcripts and enhance their nuclear export via the CRM1 export pathway. So far, HTDV/HERV-K is the only endogenous retrovirus family with a complex regulation at the posttranscriptional level. It may be regarded as an intermediate in the evolution from simple to complex retroviruses.  (+info)

Association of murine leukemia virus pol with virions, independent of Gag-Pol expression. (77/2457)

During the replication cycle of murine leukemia virus (MLV), Pol is normally synthesized as part of a Gag-Pol fusion protein. In this study, the ability of free MLV Pol to be incorporated into virions was examined. When MLV Gag and MLV Pol were coexpressed from separate plasmids in cells, reverse transcriptase (RT) activity associated with Gag core particles at a slightly lower level than did RT activity generated from wild-type Gag-Pol expression. Particles produced in this manner were somewhat less infectious than those produced with wild-type Gag-Pol. A smaller amount of MLV Pol also associated with heterologous human immunodeficiency virus type 1 Gag cores.  (+info)

A conserved dileucine-containing motif in p6(gag) governs the particle association of Vpx and Vpr of simian immunodeficiency viruses SIV(mac) and SIV(agm). (78/2457)

Vpr is a small accessory protein of human and simian immunodeficiency viruses (HIV and SIV) that is specifically incorporated into virions. Members of the HIV-2/SIV(sm)/SIV(mac) lineage of primate lentiviruses also incorporate a related protein designated Vpx. We previously identified a highly conserved L-X-X-L-F sequence near the C terminus of the p6 domain of the Gag precursor as the major virion association motif for HIV-1 Vpr. In the present study, we show that a different leucine-containing motif (D-X-A-X-X-L-L) in the N-terminal half of p6(gag) is required for the incorporation of SIV(mac) Vpx. Similarly, the uptake of SIV(mac) Vpr depended primarily on the D-X-A-X-X-L-L motif. SIV(mac) Vpr was unstable when expressed alone, but its intracellular steady-state levels increased significantly in the presence of wild-type Gag or of the proteasome inhibitor lactacystin. Collectively, our results indicate that the interaction with the Gag precursor via the D-X-A-X-X-L-L motif diverts SIV(mac) Vpr away from the proteasome-degradative pathway. While absent from HIV-1 p6(gag), the D-X-A-X-X-L-L motif is conserved in both the HIV-2/SIV(sm)/SIV(mac) and SIV(agm) lineages of primate lentiviruses. We found that the incorporation of SIV(agm) Vpr, like that of SIV(mac) Vpx, is absolutely dependent on the D-X-A-X-X-L-L motif, while the L-X-X-L-F motif used by HIV-1 Vpr is dispensable. The similar requirements for the incorporation of SIV(mac) Vpx and SIV(agm) Vpr provide support for their proposed common ancestry.  (+info)

Multiple effects of an anti-human immunodeficiency virus nucleocapsid inhibitor on virus morphology and replication. (79/2457)

Human immunodeficiency virus type 1 nucleocapsid protein is a major structural component of the virion core and a key factor involved in proviral DNA synthesis and virus formation. 2,2'-Dithiobenzamides (DIBA-1) and related compounds that are inhibitors of NCp7 are thought to eject zinc ions from NCp7 zinc fingers, inhibiting the maturation of virion proteins. Here, we show that the presence of DIBA-1 at the time of virus formation causes morphological malformations of the virus and reduces proviral DNA synthesis. Thus, it seems that DIBA-1 is responsible for a "core-freezing effect," as shown by electron microscopy analyses. DIBA-1 can also directly interfere with the fate of the newly made proviral DNA in a manner independent of its effects on virion core formation. These data strongly suggest that nucleocapsid protein is a prime target for new compounds aimed at inhibiting human immunodeficiency virus and other retroviruses.  (+info)

Efficient processing of the immunodominant, HLA-A*0201-restricted human immunodeficiency virus type 1 cytotoxic T-lymphocyte epitope despite multiple variations in the epitope flanking sequences. (80/2457)

Immune escape from cytotoxic T-lymphocyte (CTL) responses has been shown to occur not only by changes within the targeted epitope but also by changes in the flanking sequences which interfere with the processing of the immunogenic peptide. However, the frequency of such an escape mechanism has not been determined. To investigate whether naturally occurring variations in the flanking sequences of an immunodominant human immunodeficiency virus type 1 (HIV-1) Gag CTL epitope prevent antigen processing, cells infected with HIV-1 or vaccinia virus constructs encoding different patient-derived Gag sequences were tested for recognition by HLA-A*0201-restricted, p17-specific CTL. We found that the immunodominant p17 epitope (SL9) and its variants were efficiently processed from minigene expressing vectors and from six HIV-1 Gag variants expressed by recombinant vaccinia virus constructs. Furthermore, SL9-specific CTL clones derived from multiple donors efficiently inhibited virus replication when added to HLA-A*0201-bearing cells infected with primary or laboratory-adapted strains of virus, despite the variability in the SL9 flanking sequences. These data suggest that escape from this immunodominant CTL response is not frequently accomplished by changes in the epitope flanking sequences.  (+info)