(1/998) Speciation and gene flow between snails of opposite chirality.

Left-right asymmetry in snails is intriguing because individuals of opposite chirality are either unable to mate or can only mate with difficulty, so could be reproductively isolated from each other. We have therefore investigated chiral evolution in the Japanese land snail genus Euhadra to understand whether changes in chirality have promoted speciation. In particular, we aimed to understand the effect of the maternal inheritance of chirality on reproductive isolation and gene flow. We found that the mitochondrial DNA phylogeny of Euhadra is consistent with a single, relatively ancient evolution of sinistral species and suggests either recent "single-gene speciation" or gene flow between chiral morphs that are unable to mate. To clarify the conditions under which new chiral morphs might evolve and whether single-gene speciation can occur, we developed a mathematical model that is relevant to any maternal-effect gene. The model shows that reproductive character displacement can promote the evolution of new chiral morphs, tending to counteract the positive frequency-dependent selection that would otherwise drive the more common chiral morph to fixation. This therefore suggests a general mechanism as to how chiral variation arises in snails. In populations that contain both chiral morphs, two different situations are then possible. In the first, gene flow is substantial between morphs even without interchiral mating, because of the maternal inheritance of chirality. In the second, reproductive isolation is possible but unstable, and will also lead to gene flow if intrachiral matings occasionally produce offspring with the opposite chirality. Together, the results imply that speciation by chiral reversal is only meaningful in the context of a complex biogeographical process, and so must usually involve other factors. In order to understand the roles of reproductive character displacement and gene flow in the chiral evolution of Euhadra, it will be necessary to investigate populations in which both chiral morphs coexist.  (+info)

(2/998) Macrogeographic population structure of the tsetse fly, Glossina pallidipes (Diptera: Glossinidae).

Tsetse flies are confined to sub-Saharan Africa where they occupy discontinuous habitats. In anticipation of area-wide control programmes, estimates of gene flow among tsetse populations are necessary. Genetic diversities were partitioned at eight microsatellite loci and five mitochondrial loci in 21 Glossina pallidipes Austin populations. At microsatellite loci, Nei's unbiased gene diversity averaged over loci was 0.659 and the total number of alleles was 214, only four of which were shared among all populations. The mean number of alleles per locus was 26.8. Random mating was observed within but not among populations (fixation index FST=0.18) and 81% of the genetic variance was within populations. Thirty-nine mitochondrial variants were detected. Mitochondrial diversities in populations varied from 0 to 0.85 and averaged 0.42, and FST=0.51. High levels of genetic differentiation were characteristic, extending even to subpopulations separated by tens and hundreds of kilometres, and indicating low rates of gene flow.  (+info)

(3/998) Gene flow and hybridisation in a mixed oak forest (Quercus pyrenaica Willd. and Quercus petraea (Matts.) Liebl.) in central Spain.

Oaks are long-standing models for the study of gene flow and hybridisation. Temperate (Quercus petraea) and sub-Mediterranean (Quercus pyrenaica) oaks coexist in central Spain, showing remarkable differences in population size and structure. Q. petraea has a scattered distribution in central Spain, where it is at one of the southernmost limits of its range, and forms low-density stands; in contrast, Q. pyrenaica is widespread in the region. We selected a mixed population of the two species ( approximately 13 ha, 176 adults and 96 saplings) to compare the patterns of gene flow within each species and the extent of introgression between them. Using five nuclear microsatellite markers, we performed a parentage analysis and found considerable immigration from outside the stand ( approximately 38% for Q. petraea and approximately 34% for Q. pyrenaica), and estimated average seed-dispersal distances of 42 and 14 m for Q. petraea and Q. pyrenaica, respectively. Introgression between species was also estimated using our microsatellite battery. First, we developed a multivariate discriminant approach and, second, we compared our results with a widely used clustering method (STRUCTURE). Both analyses were consistent with a low level of introgression between Q. petraea and Q. pyrenaica. Indeed, only 15 adult trees, approximately 8.5%, were identified as putative hybrids when both methods of analysis were combined. Hybrids may be most common in contact zones due merely to physical proximity.  (+info)

(4/998) Effect of gene flow on spatial genetic structure in the riparian canopy tree Cercidiphyllum japonicum revealed by microsatellite analysis.

Few studies have analyzed pollen and seed movements at local scale, and genetic differentiation among populations covering the geographic distribution range of a species. We carried out such a study on Cercidiphyllum japonicum; a dioecious broad-leaved tree of cool-temperate riparian forest in Japan. We made direct measurement of pollen and seed movements in a site, genetic structure at the local scale, and genetic differentiation between populations covering the Japanese Archipelago. Parentage analysis of seedlings within a 20-ha study site indicated that at least 28.8% of seedlings were fertilized by pollen from trees outside the study site. The average pollination distance within the study site was 129 m, with a maximum of 666 m. The genotypes of 30% of seedlings were incompatible with those of the nearest female tree, and the maximum seed dispersal distance within the study site was over 300 m. Thus, long-distance gene dispersal is common in this species. The correlation between genetic relatedness and spatial distance among adult trees within the population was not significant, indicating an absence of fine-scale genetic structure perhaps caused by high levels of pollen flow and overlapping seed shadows. Six populations sampled throughout the distribution of C. japonicum in Japan showed significant isolation-by-distance but low levels of genetic differentiation (F(ST) = 0.043), also indicating long-distance gene flow in C. japonicum. Long-distance gene flow had a strong influence on the genetic structure at different spatial scales, and contributes to the maintenance of genetic diversity in C. japonicum.  (+info)

(5/998) Evidence for a one-allele assortative mating locus.

Theoretical models have shown that speciation with gene flow can occur readily via a "one-allele mechanism," where the spread of the same allele within both of two diverging species reduces their subsequent hybridization. Here we present direct genetic evidence for such an allele in Drosophila pseudoobscura. Alleles conferring high or low assortative mating in D. pseudoobscura produce the same effects when inserted into D. persimilis. This observation suggests that the type of genetic variation that is most conducive to controversial modes of speciation with gene flow, such as reinforcement or sympatric speciation, is present in nature.  (+info)

(6/998) Genetic structure of Anopheles gambiae populations on islands in northwestern Lake Victoria, Uganda.

BACKGROUND: Alternative means of malaria control are urgently needed. Evaluating the effectiveness of measures that involve genetic manipulation of vector populations will be facilitated by identifying small, genetically isolated vector populations. The study was designed to use variation in microsatellite markers to look at genetic structure across four Lake Victoria islands and two surrounding mainland populations and for evidence of any restriction to free gene flow. METHODS: Four Islands (from 20-50 km apart) and two surrounding mainland populations (96 km apart) were studied. Samples of indoor resting adult mosquitoes, collected over two consecutive years, were genotyped at microsatellite loci distributed broadly throughout the genome and analysed for genetic structure, effective migration (Nem) and effective population size (Ne). RESULTS: Ne estimates showed island populations to consist of smaller demes compared to the mainland ones. Most populations were significantly differentiated geographically, and from one year to the other. Average geographic pair-wise FST ranged from 0.014-0.105 and several pairs of populations had Ne m < 3. The loci showed broad heterogeneity at capturing or estimating population differences. CONCLUSION: These island populations are significantly genetically differentiated. Differences reoccurred over the study period, between the two mainland populations and between each other. This appears to be the product of their separation by water, dynamics of small populations and local adaptation. With further characterisation these islands could become possible sites for applying measures evaluating effectiveness of control by genetic manipulation.  (+info)

(7/998) Phylogeographic history and gene flow among giant Galapagos tortoises on southern Isabela Island.

Volcanic islands represent excellent models with which to study the effect of vicariance on colonization and dispersal, particularly when the evolution of genetic diversity mirrors the sequence of geological events that led to island formation. Phylogeographic inference, however, can be particularly challenging for recent dispersal events within islands, where the antagonistic effects of land bridge formation and vicariance can affect movements of organisms with limited dispersal ability. We investigated levels of genetic divergence and recovered signatures of dispersal events for 631 Galapagos giant tortoises across the volcanoes of Sierra Negra and Cerro Azul on the island of Isabela. These volcanoes are among the most recent formations in the Galapagos (<0.7 million years), and previous studies based on genetic and morphological data could not recover a consistent pattern of lineage sorting. We integrated nested clade analysis of mitochondrial DNA control region sequences, to infer historical patterns of colonization, and a novel Bayesian multilocus genotyping method for recovering evidence of recent migration across volcanoes using eleven microsatellite loci. These genetic studies illuminate taxonomic distinctions as well as provide guidance to possible repatriation programs aimed at countering the rapid population declines of these spectacular animals.  (+info)

(8/998) Effective seed dispersal across a fragmented landscape.

The role of seed dispersal in maintaining genetic connectivity among forest fragments has largely been ignored because gene flow by pollen is expected to predominate. By using genealogical reconstruction, we investigated gene flow after establishment of seeds in a wind-pollinated, wind-dispersed tree. Our data show that seed dispersal is the main vector of gene flow among remnants and that long-distance dispersal is common across a chronically fragmented landscape. The relative importance of seed-mediated gene flow may have been underemphasized in other fragmented systems, and diagnosing the response of forest trees to current anthropogenic disturbances requires the assessment of phenomena after establishment.  (+info)